Math  /  Algebra

QuestionChoose the expression that shows an expanded form of the logarithm. ln(x10x13x20)(12)lnx10(x1)ln(3x20)10lnx+(12)ln(x1)ln(3x20)10lnx+lnx1ln(3x12)\begin{array}{c} \ln \left(\frac{x^{10} \sqrt{x-1}}{3 x-20}\right) \\ \left(\frac{1}{2}\right) \ln x^{10}(x-1)-\ln (3 x-20) \\ 10 \ln x+\left(\frac{1}{2}\right) \ln (x-1)-\ln (3 x-20) \\ 10 \ln x+\ln \sqrt{x-1}-\ln (3 x-12) \end{array}

Studdy Solution
Combine the results from the previous steps:
ln(x10x13x20)=10lnx+12ln(x1)ln(3x20)\ln \left(\frac{x^{10} \sqrt{x-1}}{3x-20}\right) = 10 \ln x + \frac{1}{2} \ln(x-1) - \ln(3x-20)
The expanded form of the logarithm is:
10lnx+12ln(x1)ln(3x20)10 \ln x + \frac{1}{2} \ln(x-1) - \ln(3x-20)

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord