Math  /  Algebra

QuestionChoose the expression that shows an expanded form of the logarithm. ln(x10x13x20)(12)lnx10(x1)ln(3x20)10lnx+(12)ln(x1)ln(3x20)10lnx+lnx1ln(3x12)\begin{array}{c} \ln \left(\frac{x^{10} \sqrt{x-1}}{3 x-20}\right) \\ \left(\frac{1}{2}\right) \ln x^{10}(x-1)-\ln (3 x-20) \\ 10 \ln x+\left(\frac{1}{2}\right) \ln (x-1)-\ln (3 x-20) \\ 10 \ln x+\ln \sqrt{x-1}-\ln (3 x-12) \end{array}

Studdy Solution

STEP 1

1. We are given a logarithmic expression and asked to find its expanded form.
2. We will use logarithmic properties to expand the expression.
3. The properties of logarithms include: - ln(ab)=lna+lnb\ln(a \cdot b) = \ln a + \ln b - ln(ab)=lnalnb\ln\left(\frac{a}{b}\right) = \ln a - \ln b - ln(ab)=blna\ln(a^b) = b \ln a

STEP 2

1. Apply the quotient rule for logarithms.
2. Apply the product rule for logarithms.
3. Apply the power rule for logarithms.

STEP 3

Apply the quotient rule for logarithms to the expression:
ln(x10x13x20)=ln(x10x1)ln(3x20)\ln \left(\frac{x^{10} \sqrt{x-1}}{3x-20}\right) = \ln(x^{10} \sqrt{x-1}) - \ln(3x-20)

STEP 4

Apply the product rule for logarithms to the numerator:
ln(x10x1)=ln(x10)+ln(x1)\ln(x^{10} \sqrt{x-1}) = \ln(x^{10}) + \ln(\sqrt{x-1})

STEP 5

Apply the power rule for logarithms to each term:
ln(x10)=10lnx\ln(x^{10}) = 10 \ln x
ln(x1)=ln((x1)1/2)=12ln(x1)\ln(\sqrt{x-1}) = \ln((x-1)^{1/2}) = \frac{1}{2} \ln(x-1)

STEP 6

Combine the results from the previous steps:
ln(x10x13x20)=10lnx+12ln(x1)ln(3x20)\ln \left(\frac{x^{10} \sqrt{x-1}}{3x-20}\right) = 10 \ln x + \frac{1}{2} \ln(x-1) - \ln(3x-20)
The expanded form of the logarithm is:
10lnx+12ln(x1)ln(3x20)10 \ln x + \frac{1}{2} \ln(x-1) - \ln(3x-20)

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord