Vector

Problem 401

Find the translation from triangle KMNK M N with vertices K(12,3),M(5,2),N(8,4)K(12,3), M(-5,2), N(8,-4) to K(18,0),M(1,1),N(14,7)K^{\prime}(18,0), M^{\prime}(1,-1), N^{\prime}(14,-7).

See Solution

Problem 402

Describe the rotation that transforms triangle PQRP Q R with vertices P(9,2)P(9,-2), Q(1,0)Q(1,0), R(7,3)R(-7,3) to P(9,2)P^{\prime}(-9,2), Q(1,0)Q^{\prime}(-1,0), R(7,3)R^{\prime}(7,-3).

See Solution

Problem 403

Find the rotation that transforms triangle PQRPQR with vertices P(9,2)P(9,-2), Q(1,0)Q(1,0), R(7,3)R(-7,3) to P(9,2)P'(-9,2), Q(1,0)Q'(-1,0), R(7,3)R'(7,-3).

See Solution

Problem 404

Reflect triangle STW across the x-axis to get triangle S'T'W' with vertices S(15,6)S'(15,6), T(2,3)T'(-2,-3), W(8,8)W'(-8,8).

See Solution

Problem 405

A point charge of 2μC2 \mu \mathrm{C} is placed at the origin. There is an external uniform field E=600iN/C\mathbf{E}=600 \mathrm{iN} / \mathrm{C}. What is the net force on a 6μC6 \mu \mathrm{C} charge placed at (3 m,3 m)(3 \mathrm{~m}, 3 \mathrm{~m}) ? 7.843103j+4.243103jN7.843 \cdot 10^{-3} \mathrm{j}+4.243 \cdot 10^{-3} \mathrm{jN}
Note: You can earn partial credit on this problem. Show: \square Correct Answers

See Solution

Problem 406

جد قيم xالتي تجعل الزاوية بين المتجهين منفرجة\text{جد قيم } \, x \, \text{التي تجعل الزاوية بين المتجهين منفرجة}

See Solution

Problem 407

Sketch the polar point (-6, -25π/12).

See Solution

Problem 408

Find a linearly independent set of vectors that spans the same subspace of R4\mathbb{R}^{4} as that spanned by the vectors [2201],[4225],[3213],[7615]\left[\begin{array}{l} 2 \\ 2 \\ 0 \\ 1 \end{array}\right], \quad\left[\begin{array}{c} -4 \\ -2 \\ 2 \\ -5 \end{array}\right], \quad\left[\begin{array}{c} 3 \\ 2 \\ -1 \\ 3 \end{array}\right], \quad\left[\begin{array}{c} 7 \\ 6 \\ -1 \\ 5 \end{array}\right]
A linearly independent spanning set for the subspace is: {[],[[]}........... ]\left\{\begin{array}{l} {\left[\begin{array}{l} \square \\ \square \\ \square \\ \square \end{array}\right],\left[\begin{array}{l} {\left[\begin{array}{l} \square \\ \square \\ \square \\ \square \end{array}\right]} \end{array}\right\} . . . . . . . . . . . ~} \\ \square \end{array}\right]

See Solution

Problem 409

\text{How do you know that the bicyclists in the first panel above are moving at a constant velocity?}

See Solution

Problem 410

Relevante Lernziele: Lineare Algebra Gegeben ist ein Dreieck mit den Eckpunkten A(5,3,1),B(1,1,4)A(5,3,1), B(1,1,4) und C(4,5,4)C(4,5,4). Bestimmen Sie die Längen der Seiten und die Innenwinkel des Dreiecks.

See Solution

Problem 411

Question 10 : A rectangular metal frame LMOK is placed between two long and parallel straight wires, all of which are in the same plane as the figure, if the same current intensity I passes through each of them, then the frame ..... 1- rotates around an axis parallel to the two wires 2- is not affected by a torque 3- moves upwards in a direction parallel to the two wires 4- rotates around an axis perpendicular to the two wires

See Solution

Problem 412

choose the letter that best answers the question or completes the statement.
1. Motion is described with respect to a b. displacement. c. slope. d. frame of reference.
2. Displacement is distance combined with a. direction. b. speed. c. velocity. d. magnitude.
3. Displacement vectors of 3 m and 5 m in the same direction combine to make a displacement vector that is a. 2 m . b. 0 m . c. 8 m . d. 15 m .
4. Average speed is the total distance divided by the a. average distance. b. average acceleration. c. total time. d. slope.
5. The slope of a distance-time graph is equal to the a. speed. b. acceleration. c. displacement. d. motion.
6. Velocity is
10. The rate at which velocity is changing at a given instant is described by (4)Text) assessment at PHSchool.com me a. instantaneous acceleration. b. average speed. c. constant speed. d. vector addition.

Understanding Concepts
11. Why is it necessary to choose a single frame reference when measuring motion?
12. For what kinds of distances would you choos make measurements in millimeters? In kilom
13. Light from a star travels to Earth in a straig line at a constant speed of almost 300,000 What is the acceleration of the light?
14. If two displacement vectors add to yield displacement of zero, what do you know the two displacements?
15. How will the total distance traveled by in 2 hours be affected if the average sp is doubled?
16. How do you know that a speedomete you the instantaneous speed of a car?
17. On a distance-time graph, what wou curve describing constant speed look
18. A spider is crawling on a wall. First it 1 meter up, then 1 meter to the left 1 meter down. What is its total disp
19. A jogger travels 8.0 kilometers in 1 What is the jogger's average spees
20. You see a lightning bolt in the sky clap of thunder 3 seconds later. travels at a speed of 330 m/s.Hc330 \mathrm{~m} / \mathrm{s} . \mathrm{Hc} was the lightning? (Hint: Assum lightning instantly.)
7. Two or more velocities can be combined by a. graphing the slope. b. using vector addition. c. calculating the instantaneous speed. d. determining the rate.
8. A ball just dropped is an example of a. constant speed. b. instantaneous speed. c. combining displacements. d. free fall.
9. Acceleration is equal to a. distance divided by time. b. change in speed divided by time. c. the slope of a distance-time graph. d. change in speed multiplied by time.

See Solution

Problem 413

Finde die Koordinaten der beiden anderen Ecken eines Quadrats mit einer Seitenkante ABAB zwischen A(34)A(3 \mid 4) und B(76)B(7 \mid 6).

See Solution

Problem 414

Find the point that is 710\frac{7}{10} of the way from A(3,5)A(-3,-5) to B(9,7)B(9,7).

See Solution

Problem 415

Use the surface integral in Stokes' Theorem to calculate the circulation of the field F\mathbf{F} around the curve C in the indicated direction. F=yi+xzj+x2k\mathbf{F}=y \mathbf{i}+x z \mathbf{j}+x^{2} \mathbf{k}
C: The boundary of the triangle cut from the plane 8x+y+z=88 x+y+z=8 by the first octant, counterclockwise when viewed from above.
The circulation is \square (Type an integer on fraction.)

See Solution

Problem 416

Question 7: Let {u1,u2,u3}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\} be an orthonormal basis for a three-dimensional subspace SS of an inner product space VV, and let x=2u1u2+u3 and y=u1+u24u3.\boldsymbol{x}=2 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}+\boldsymbol{u}_{3} \quad \text { and } \quad \boldsymbol{y}=\boldsymbol{u}_{1}+\boldsymbol{u}_{2}-4 \boldsymbol{u}_{3} . a) Determine the value of x,y\langle\boldsymbol{x}, \boldsymbol{y}\rangle. b) Determine the value of x\|\boldsymbol{x}\|.

See Solution

Problem 417

theme
Question 7 of 18 The angle θ\theta between the vectors u=(1,2,3)u=(1,-2,3) and v=(3,1,2)v=(3,-1,-2) equal to cos(1/14)\cos (1 / 14) cos1(1/14)\cos ^{-1}(1 / 14) cos1(1/14)\cos ^{-1}(-1 / 14) cos1(2/14)\cos ^{-1}(-2 / 14)

See Solution

Problem 418

Theme
Question 9 of 18{ }^{18} The unit vector parallel to the vector u=(2,4,4)u=(2,4,-4) is (1/5,2/5,2/5)(1 / 5,2 / 5,-2 / 5) (1/9,2/9,2/9)(1 / 9,2 / 9,-2 / 9) (1/3,2/3,2/3)(-1 / 3,-2 / 3,2 / 3) (1/18,2/18,2/18)(1 / 18,2 / 18,-2 / 18)

See Solution

Problem 419

A vector with magnitude 4 points in a direction 295 degrees counterclockwise from the positive xx axis. Write the vector in component form. Vector == \square Give each value accurate to at least 1 decimal place Add Work
Submit Question

See Solution

Problem 420

Select all the correct answers.
Which vectors are unit vectors? u=1372,13132u=\left\langle-\frac{1}{3} \sqrt{\frac{7}{2}}, \frac{1}{3} \sqrt{\frac{13}{2}}\right\rangle u=13,23u=\left\langle\frac{1}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right\rangle u=1253,1273u=\left\langle\frac{1}{2} \sqrt{\frac{5}{3}},-\frac{1}{2} \sqrt{\frac{7}{3}}\right\rangle u=37,27\mathbf{u}=\left\langle\frac{3}{\sqrt{7}},-\frac{2}{\sqrt{7}}\right\rangle

See Solution

Problem 421

QUESTION 4
Convert the following rectangular coordinates to cylindrical coordinates. Give angles in terms of Pi. If your answer is two-thirds Pi, you would type 2 pil3. It might look familiar. Keep the square root(s) in your answer- do not use decimals. Rectangular: (2,2,2sqrt2)=(2,-2,2 s q r t 2)= Cylindrical: \square \square \square

See Solution

Problem 422

Exercice 2 Soit X1,X2X_{1}, X_{2} et X3X_{3}, trois vecteurs de I3I^{3} tels que : X1=(1,5,2),X2=(2,1,2)X_{1}=(-1,5,2), X_{2}=(2,-1,2) et X3=(1,1,3)X_{3}=(1,1,3) a. Calculer les combinaisons linéaires suivantes: 3X12X2+X3;3(X1X3)+X23 \mathrm{X}_{1}-2 \mathrm{X}_{2}+\mathrm{X}_{3} ; 3\left(\mathrm{X}_{1}-\mathrm{X}_{3}\right)+\mathrm{X}_{2} b. Trouver trois réels α,β\alpha, \beta et γ\gamma non nuls, tels que αX1+βX2+γX3\alpha \mathrm{X}_{1}+\beta \mathrm{X}_{2}+\gamma \mathrm{X}_{3} ait ses deux premières composantes nulles .
Exercice 3
1. Soient u1=(1,1,1,1),u2=(2,1,2,1),u3=(4,1,4,1)u_{1}=(1,1,1,1), u_{2}=(2,-1,2,-1), u_{3}=(4,1,4,1) trois vecteurs de R4R^{4} La famille {u1,u2,u3}\{\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\} est-elle libre?
2. Soient dans R3\mathbb{R}^{3} les vecteurs v1=(1,1,0),v2=(4,1,4)v 1=(1,1,0), v 2=(4,1,4) et v3=(2,1,4)v 3=(2,-1,4).

La famille (v1,v2,v3)(v 1, v 2, v 3) est-elle libre ?

See Solution

Problem 423

Translating LMN\triangle L M N to the right 8 units and downward 1 unit, we get its image LMN\triangle L^{\prime} M^{\prime} N^{\prime}.
Note that LMN\triangle L M N has vertices L(3,6),M(5,4)L(-3,6), M(-5,4), and N(1,1)N(-1,1). Also, note that ΔLMN\Delta L^{\prime} M^{\prime} N^{\prime} has vertices L(5,5),M(3,3)L^{\prime}(5,5), M^{\prime}(3,3), and N(7,0)N^{\prime}(7,0). Complete the following.

See Solution

Problem 424

Calculate Michael Phelps' resultant velocity swimming North at 14 m/s14 \mathrm{~m/s} against a 5 m/s5 \mathrm{~m/s} South current.

See Solution

Problem 425

Find the resultant velocity when crossing a river with a current of 15 m/s15 \mathrm{~m/s} downstream and crossing at 2 m/s2 \mathrm{~m/s} north.

See Solution

Problem 426

Find slopes and lengths for quadrilateral with points Q(1,3), R(3,-4), S(9,-7), T(7,0). Identify its type.

See Solution

Problem 427

Write the coordinates of the vertices after a translation 2 units left. K(,)K^{\prime}(\square, \square)

See Solution

Problem 428

Consider quadrilateral PQRSP Q R S below.
Note that PQRSP Q R S has vertices P(1,3),Q(4,1),R(1,7)P(-1,3), Q(4,1), R(1,-7), and S(4,5)S(-4,-5). Complete the following to determine if PQRSP Q R S is a parallelogram. (a) Find the length of QR\overline{Q R} and the length of PS\overline{P S}.
Give exact answers (not decimal approximations).
Length of QR\overline{Q R} : \square
Length of PS\overline{P S} : \square (b) Find the length of RS\overline{R S} and the length of PQ\overline{P Q}. Give exact answers (not decimal approximations) y
Length of RS\overline{R S} : \square
Length of PQ\overline{P Q} : \square (c) From parts (a) and (b), what can we conclude? The quadrilateral is a parallelogram because it has one pair of opposite sides that are congruent, even though the other two sides are not congruent. The quadrilateral is not a parallelogram because it has a pair of opposite sides that are not congruent. The quadrilateral is a parallelogram because it has two pairs of opposite sides that are congruent. It cannot be determined if the quadrilateral is a parallelogram.

See Solution

Problem 429

6 Дана прямая призма ABCDA1B1C1D1A B C D A_{1} B_{1} C_{1} D_{1}. Известно, что AB=AC=AA1,BAC=90A B=A C=A A_{1}, \angle B A C=90^{\circ}. Найдите угол между прямыми B1CB_{1} C и ABA B.

See Solution

Problem 430

C(15,3)C(15,3) and D(6,15)D(6,15) are the endpoints of a line segment. What is the midpoint MM of that line segment? ( 3{ }^{3}. 7 , Write the coordinates as decimals or integers. M=(,)M=(\square, \square) Sulinit

See Solution

Problem 431

Which point has coordinates (4,112)\left(-4,1 \frac{1}{2}\right) ?
U v w

See Solution

Problem 432

Write the coordinates of the vertices after a rotation 9090^{\circ} counterclockwise around the origin. J(1,K(,,)L(,)M(,)\begin{array}{l} J^{\prime}(\sqrt{1}, \\ K^{\prime}(, \quad, \quad) \\ L^{\prime}(\square, \square) \\ M^{\prime}(\square, \square) \end{array}

See Solution

Problem 433

Find the point that is 310\frac{3}{10} of the way from A(3,6)A(-3,-6) to B(10,5)B(10,5).

See Solution

Problem 434

(文) The point U(1,3)U(-1,-3) is reflected over the xx-axis. What are the coordinates of the resulting point, U'? U(,)U^{\prime}(\square, \square)

See Solution

Problem 435

You start at ( 4,7 ). You move up 3 units and down 1 unit. Where do you end?

See Solution

Problem 436

問題 64 平面において, 原点を中心に π6\frac{\pi}{6} 回転移動させてから, 直線 y=2xy=-2 x に関して対称移動させても動かない点を求めよ。

See Solution

Problem 437

A 5.0 kg block is pushed 1.0 m at a constant velocity up a vertical wall by a constant force applied at an angle of 29.029.0^{\circ} with the horizontal, as shown in the figure.
The acceleration of gravity is 9.81 m/s29.81 \mathrm{~m} / \mathrm{s}^{2}.
Drawing not to scale. If the coefficient of kinetic friction between the block and the wall is 0.30 , find a) the work done by the force on the block.
Answer in units of J .

See Solution

Problem 438

1. From the figure below, P is directed at an angle α\alpha from x -axis and the 200 N force is acting at a slope of 5 vertical to 12 horizontal. a. Find the value of F and α\alpha if T=450 N,P=250 N,β=30\mathrm{T}=450 \mathrm{~N}, \mathrm{P}=250 \mathrm{~N}, \beta=30^{\circ}, and the resultant is 300 N acting up along the y -axis. Answer: F=484.92 N,α=61.22F=484.92 \mathrm{~N}, \alpha=61.22 。 b. Find the value of F and α\alpha if T=450 N,P=250 N,β=30\mathrm{T}=450 \mathrm{~N}, \mathrm{P}=250 \mathrm{~N}, \beta=30^{\circ} and the resultant is zero. Answer: F=264.85 N,α=28.16F=264.85 \mathrm{~N}, \alpha=28.16
2. From Figure below, PP is directed at an angle α\alpha from xx-axis and the 200 N force is acting at a slope of 5 vertical to 12 horizontal. a. Find P and α\alpha if the resultant is 500 N upward to the right with a slope of 3 horizontal to 4 vertical. Answer: P=490.68 N,α=76.40P=490.68 \mathrm{~N}, \alpha=76.40

See Solution

Problem 439

2 Consider the paralelogram formed by the points E(1,2,3),F(0,3,5),G(0,1,2)E(1,2,3), F(0,3,5), G(0,1,2) and HH. (a) Show how to find point HH if this point has a z-coord inate of 4 . 1 mark (b) Find F\angle F using vector concepts. (c) Find the area of EFG\triangle E F G using vector concepts.

See Solution

Problem 440

Plot the point (3, -\frac{7 \pi}{4}).

See Solution

Problem 441

If this triangle is reflected over the line y=ky=k, what are the coordinates for yy ? (2,6)(-2,-6) (6.2)(-6.2) 125 (6.2)

See Solution

Problem 442

If you rotate this triangle 180 degrees counterclockwise, what are the coordinates for point KK (6,6)(6,-6) (6,6)(-6,6) (6,6)(-6,-6) (6,6)(6,6)

See Solution

Problem 443

Determine the coordinate of the point P(x,y)P(x, y) after a rotation of 40 degrees about (0,0)(0,0), from the point (5,0)(5,0). Round to 1 decimal place.

See Solution

Problem 444

Two ships leave a port. One sails at 4848^{\circ}, 12 knots; the other at 138138^{\circ}, 22 knots. Distance apart after 1.5 hours?

See Solution

Problem 445

Two ships leave a port at the same time. After 1.5 hours, how far apart are they if one sails at 24 knots and the other at 26 knots?

See Solution

Problem 446

Two ships leave a port. First sails at 4747^{\circ}, 12 knots; second at 137137^{\circ}, 14 knots. Distance apart after 1.5 hours?

See Solution

Problem 447

Find the new coordinates of the point (2,6)(2,-6) after applying the transformations R270R_{270^{\circ}} and then ry-axisr_{\mathrm{y} \text{-axis}}.

See Solution

Problem 448

Two ships leave a port: one at N3050EN 30^{\circ} 50^{\prime} E at 20.6 mph and another at 5910E59^{\circ} 10^{\prime} E at 12.3 mph. Find their distance apart after 2 hours. Round to the nearest mile.

See Solution

Problem 449

إذا كان المطوح المحدد بالمتجهات

See Solution

Problem 450

Considere el plano x2y+2z=1x-2 y+2 z=1 y los puntos A(1,2,3)B(1,4,4)A(-1,2,3) \quad B(1,4,4) que pertenecen a dicho plano. Si AA es el centro del cuadrad̃o y BB es un vértice, determine los otros vértices.

See Solution

Problem 451

Given F=4i^+5j^6yk^\vec{F}=4 \hat{i}+5 \hat{j}-6 y \hat{k}. Find Fdlundefined\oint \vec{F} \cdot \overrightarrow{d l} going around the loop that starts from the point (0,0,0)(0,0,0) to the point (0,0,4)(0,0,4) then to the point (0,1,4)(0,1,4) then to the point (0,1,0)(0,1,0) and back to (0,0,0)(0,0,0). a. 4 b. -4 c. 24 d. 0 e. -24

See Solution

Problem 452

Given F=4i^+5j^6yk^\vec{F}=4 \hat{i}+5 \hat{j}-6 y \hat{k}. Find Fdlundefined\oint \vec{F} \cdot \overrightarrow{d l} going around the loop that starts from the point (0,0,0)(0,0,0) to the point (0,0,4)(0,0,4) then to the paint (0,1,4)(0,1,4) then to the point (0,1,0)(0,1,0) and back to (0,0,0)(0,0,0). a. -4 b. -24 c. 0 d. 24 e. 4
Clear my choice

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord