Simplify

Problem 4501

cosπ6cscπ3+sinπ4\cos \frac{\pi}{6} \csc \frac{\pi}{3}+\sin \frac{\pi}{4}

See Solution

Problem 4502

Simplify the radical expression: *
40\sqrt{40}

See Solution

Problem 4503

Simplify. 641664^{\frac{1}{6}}

See Solution

Problem 4504

01(7x26x+2)dx=\int_0^1 (7x^2 - 6x + 2) dx = \Box (Simplify your answer.)

See Solution

Problem 4505

Evaluate the function g(x)=x2+5xg(x)=x^{2}+5 x for the given value of xx. Simplify your answer. g(c2)=g(c-2)= \square

See Solution

Problem 4506

21. cosθ1+sinθ+1+sinθcosθ\frac{\cos \theta}{1+\sin \theta}+\frac{1+\sin \theta}{\cos \theta}

See Solution

Problem 4507

(142)2\left(\frac{\frac{1}{4}}{2}\right)^2

See Solution

Problem 4508

Rewrite the mixed number 4124 \frac{1}{2} as an equivalent fraction with a denominator equal to 12. 412=?12412=12\begin{array}{c} 4 \frac{1}{2}=\frac{?}{12} \\ 4 \frac{1}{2}=\frac{\square}{12} \end{array}

See Solution

Problem 4509

Expand and combine 3(3x4a1)a(2y+5x)-3(3 x-4 a 1)-a(2 y+5 x)

See Solution

Problem 4510

Calculate the value of 1.4374\frac{1.4}{374}.

See Solution

Problem 4511

Factor y=x27x+12y=x^{2}-7 x+12 into the form y=(xh)(xk)y=(x-h)(x-k).

See Solution

Problem 4512

Rewrite the equation y1=45(x+5)y-1=\frac{4}{5}(x+5) in slope-intercept form.

See Solution

Problem 4513

Factor the equation y=x27x+12y=x^{2}-7 x+12 into the form y=(xh)(xk)y=(x-h)(x-k).

See Solution

Problem 4514

Rewrite y=x2+5x4y=-x^{2}+5 x-4 as y=(xp)2+qy=-(x-p)^{2}+q.

See Solution

Problem 4515

Simplify: 123(12+1)2 \frac{1}{2}-3\left(\frac{1}{2}+1\right)^{2}

See Solution

Problem 4516

Simplify: 1+32251 + 3^{2} \cdot 2 - 5

See Solution

Problem 4517

Simplify this expression: 12(6753+22)(4)32\frac{1}{2}\left(\frac{67}{5 \sqrt{3}+2 \sqrt{2}}\right)(4) \frac{\sqrt{3}}{2} to =(67353+22)53225322=\left(\frac{67 \sqrt{3}}{5 \sqrt{3}+2 \sqrt{2}}\right) \frac{5 \sqrt{3}-2 \sqrt{2}}{5 \sqrt{3}-2 \sqrt{2}}.

See Solution

Problem 4518

Calculate 15(7+2)15 - (7 + 2).

See Solution

Problem 4519

Simplify the expression 18x7y4\sqrt{18 x^{7} y^{4}}.

See Solution

Problem 4520

Multiply: (5.6 k j^{8})(-3.25 k^{9})(\frac{1}{4} k^{7} j^{12}) and find: (-5 m n^{3} p^{5})^{2}.

See Solution

Problem 4521

Simplify (3x2y5)3\left(3 x^{2} y^{5}\right)^{3}.

See Solution

Problem 4522

Solve aaa23=ak\frac{a \sqrt{a}}{\sqrt[3]{a^{2}}}=a^{k} for the value of kk.

See Solution

Problem 4523

Find the exact value of tan20cos70cos20\tan 20^{\circ}-\frac{\cos 70^{\circ}}{\cos 20^{\circ}} without a calculator.

See Solution

Problem 4524

Calculate kk using the formula: k=2(2)2+8(2)+7k=2(-2)^{2}+8(-2)+7.

See Solution

Problem 4525

Find the simplified ratio of sugar to flour for chocolate chip cookies using 10 cups of sugar and 20 cups of flour.

See Solution

Problem 4526

Convert 88F88^{\circ} \mathrm{F} to C{ }^{\circ} \mathrm{C} using F=(C×9/5)+32{ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32.

See Solution

Problem 4527

Convert the function y=6(x+1)215y=6(x+1)^{2}-15 into standard form.

See Solution

Problem 4528

Simplify: 81+42-8 - 1 + 4 \cdot 2

See Solution

Problem 4529

Simplify: 72÷9+7272 \div 9 + 7^{2}

See Solution

Problem 4530

Calculate 72+1052+107^{2}+10 \cdot 5^{2}+10.

See Solution

Problem 4531

Calculate the expression (10+22)621(10 + 2 - 2) \cdot 6^{2} - 1.

See Solution

Problem 4532

Calculate the expression: (10+22)621(10+2-2) \cdot 6^{2}-1.

See Solution

Problem 4533

Calculate 49760225\frac{49}{7} \cdot \frac{60^{2}}{2 \cdot 5}.

See Solution

Problem 4534

Simplify the expression: 104p+2p10 \cdot 4p + 2p.

See Solution

Problem 4535

Simplify 2365÷233223^{65} \div 23^{32} using the Quotient Rule of Integer Exponents.

See Solution

Problem 4536

Simplify 2365÷233223^{65} \div 23^{32} using the Quotient Rule of Integer Exponents.

See Solution

Problem 4537

Simplify 2365÷233223^{65} \div 23^{32} using the Quotient Rule of Exponents. What is the result?

See Solution

Problem 4538

Simplify the expression a67b34\frac{a^{67}}{b^{34}}.

See Solution

Problem 4539

Simplify: 1253÷75312^{53} \div 7^{53} using the Quotient Rule of Integer Exponents.

See Solution

Problem 4540

Simplify the expression x675x453\frac{x^{675}}{x^{453}}.

See Solution

Problem 4541

Combine any like terms in the expression. If there are no like terms, rewrite th exprestion. 40u+20u+9u+5u40 u+20 u+9 u+5 u \square H Subroil

See Solution

Problem 4542

Sadie simplified the expression 54a7b3\sqrt{54 a^{7} b^{3}}, where a0a \geq 0, as shown: 54a7b3=326a2a5b2b=3ab6a5b\sqrt{54 a^{7} b^{3}}=\sqrt{3^{2} \cdot 6 \cdot a^{2} \cdot a^{5} \cdot b^{2} \cdot b}=3 a b \sqrt{6 a^{5} b}
Describe the error Sadie made, and explain how to find the correct answer. \square DONE
5 of 6 Previous Activity

See Solution

Problem 4543

Write an expression that is equivalent to 1.5a+4.7+0.25a0.30.5a1.5a + 4.7 + 0.25a - 0.3 - 0.5a.
1.5a+4.7+0.25a0.30.5a=1.5a + 4.7 + 0.25a - 0.3 - 0.5a = aa + ?

See Solution

Problem 4544

First combine the like terms in 4f+(21)+10f4f + (-21) + 10f.
4f+(21)+10f=14f+(21)4f + (-21) + 10f = \boxed{\phantom{14}}f + (\boxed{\phantom{-21}})

See Solution

Problem 4545

90. Write sin5x\sin 5 x in terms of powers of sinx\sin x.

See Solution

Problem 4546

Rewrite the following function in terms of step functions. f(t)={t20t<π3πt<2πt2+2t2πf(t)=\left\{\begin{array}{ll} t^{2} & 0 \leq t<\pi \\ 3 & \pi \leq t<2 \pi \\ t^{2}+2 & t \geq 2 \pi \end{array}\right.
Select one: t2u(tπ)+3(u(tπ)u(t2π))+(t2+2)u(t2π)t^{2} u(t-\pi)+3(u(t-\pi)-u(t-2 \pi))+\left(t^{2}+2\right) u(t-2 \pi) t2u(tπ)+3(u(tπ)u(t2π))+(t2+2)(1u(t2π))t^{2} u(t-\pi)+3(u(t-\pi)-u(t-2 \pi))+\left(t^{2}+2\right)(1-u(t-2 \pi)) t2(1u(tπ))+3(u(tπ)u(t2π))+(t2+2)u(t2π)t^{2}(1-u(t-\pi))+3(u(t-\pi)-u(t-2 \pi))+\left(t^{2}+2\right) u(t-2 \pi) 1t2u(tπ)+3(u(tπ)u(t2π))+(t2+2)u(t2π)1-t^{2} u(t-\pi)+3(u(t-\pi)-u(t-2 \pi))+\left(t^{2}+2\right) u(t-2 \pi) Clear my choice

See Solution

Problem 4547

MARCH 2016
11. a) Which one of the following is the real part and imaginary parts of the complex number: (1+i1i)(1i1+i)\left(\frac{1+i}{1-i}\right)-\left(\frac{1-i}{1+i}\right) ? i) 0 and 1 ii) 0 and 2 iii) 3 and 2 iv) 0 and 4 (1) b) Deleted. c) Deleted.

IMPROVEMENT 2015
12. a) What is i35i^{-35} ? b) Deleted. c) Deleted.

MARCH 2015 Deleted. IMPROVEMENT 2014 Deleted. MARCH 2014 Deleted. SEPTEMBER 2013
13. a) Express 1+i1i\frac{1+i}{1-i} in the form a+iba+i b. b) Deleted.

MARCH 2013 Deleted. (2)
MARCH 2011
22. Consider the complex number Z=2+i(1+i)(12i)Z=\frac{2+i}{(1+i)(1-2 i)} a) Express Z in the form a+iba+i b. b) Deleted.

MARCH 2010
23. i) Express the complex number z=5+i2+3iz=\frac{5+i}{2+3 i} in the form a+iba+i b ii) Deleted.

AUGUST 2009
24. i) Express the complex number 31619\frac{3-\sqrt{-16}}{1-\sqrt{-9}} in the form a+iba+i b. ii) Deleted. iii) Deleted.

MARCH 2009
25. a) Express the complex number 2i(1i)(1+2i)\frac{2-i}{(1-i)(1+2 i)} in the form a+iba+i b. b) Deleted. c) Deleted.

See Solution

Problem 4548

Perform the indicated opention 5g2340mg5 g-2340 \mathrm{mg}

See Solution

Problem 4549

k=0n12klog(nk)\sum_{k=0}^{n-1} 2^{k} \log (n-k)

See Solution

Problem 4550

Simplify, using the distributive property.
Enter the number that belongs in the green box. 2(4+z)=[?]+z2(4+z)=[?]+\square z Enter

See Solution

Problem 4551

k=1nlog2k \sum_{k=1}^{n} \log_{2} k

See Solution

Problem 4552

Convert the following equation into standard form. y=7x+7[?]x+y=\begin{array}{c} y=-7 x+7 \\ {[?] x+y=\square} \end{array}
Standard Form: Ax+By=CA x+B y=C Enter

See Solution

Problem 4553

Convert the following equation into standard form. y=7x+77x+y=[?]\begin{array}{c} y=-7 x+7 \\ 7 x+y=[?] \end{array}
Standard Form: Ax+By=CA x+B y=C 7 \square Enter

See Solution

Problem 4554

Use a cofunction to write an expression equal to cosπ7\cos\frac{\pi}{7}.
cosπ7=\cos\frac{\pi}{7} = \Box

See Solution

Problem 4555

Find (fg)(x)(f \circ g)(x) f(x)=6xg(x)=x+9(fg)(x)=\begin{aligned} f(x) & =6 x \\ g(x) & =x+9 \\ (f \circ g)(x)= & \end{aligned}

See Solution

Problem 4556

4. Express each of the following in simplest form. a) 8275350\frac{8}{2 \sqrt{75}-3 \sqrt{50}} b) 262276\frac{2 \sqrt{6}}{2 \sqrt{27}-\sqrt{6}} c) 328045\frac{3}{2 \sqrt{80}-\sqrt{45}} d) 32+23128\frac{3 \sqrt{2}+2 \sqrt{3}}{\sqrt{12}-\sqrt{8}}

See Solution

Problem 4557

3. Use conjugate radicals to rationalize the denominator. a) 3525+25+235+325222\frac{3}{\sqrt{5}-\sqrt{2}} \cdot \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}-\frac{3 \sqrt{5}+3 \sqrt{2}}{\sqrt{5}^{2}-\sqrt{2}^{2}} b) 2525+32\frac{2 \sqrt{5}}{2 \sqrt{5}+3 \sqrt{2}} 31024\frac{3 \sqrt{10}-2}{4} 35+32(5)(2)35+323=5+2\frac{3 \sqrt{5}+3 \sqrt{2}}{(5)-(2)} \rightarrow \frac{3 \sqrt{5}+3 \sqrt{2}}{3}=-\sqrt{5}+\sqrt{2} c) 25825+3\frac{2 \sqrt{5}-8}{2 \sqrt{5}+3} d) 23252+3\frac{2 \sqrt{3}-\sqrt{2}}{5 \sqrt{2}+\sqrt{3}}

See Solution

Problem 4558

Q(x)+R(x)D(x)Q(x) + \frac{R(x)}{D(x)}
2x4+7x2+9x6x2x+2=\frac{2x^4 + 7x^2 + 9x - 6}{x^2 - x + 2} =
Q(x)+R(x)D(x)=Q(x) + \frac{R(x)}{D(x)} =

See Solution

Problem 4559

Simplify the expression: 2x3x+2x8+6+72x - 3x + 2x - 8 + 6 + 7.

See Solution

Problem 4560

Calculate the value of 3122\frac{31^{2}}{2}.

See Solution

Problem 4561

Find the probability of landing on a factor of 45 first, then a prime number, after spinning a spinner twice. Simplify your answer.

See Solution

Problem 4562

Rewrite x28x4=0x^{2}-8 x-4=0 as (xp)2=q(x-p)^{2}=q.

See Solution

Problem 4563

Calculate 12+(2)-12 + (-2).

See Solution

Problem 4564

Simplify cos2x1sin2x1\frac{\cos ^{2} x-1}{\sin ^{2} x-1}. Options: sec2x\sec ^{2} x, tan2x\tan ^{2} x, sec2x-\sec ^{2} x, tan2x-\tan ^{2} x.

See Solution

Problem 4565

Simplify the expression cos2x1sin2x1\frac{\cos^2 x - 1}{\sin^2 x - 1}.

See Solution

Problem 4566

Simplify tanx+cotxcotx\frac{\tan x+\cot x}{\cot x} and find if it equals tan2x\tan^2 x, sec2x\sec^2 x, sec2x-\sec^2 x, or tan2x-\tan^2 x.

See Solution

Problem 4567

Rewrite 8i32i\frac{8-i}{3-2 i} as a+bia+bi and find the value of aa (with i=1i=\sqrt{-1}).

See Solution

Problem 4568

Calculate the expression: [4(7+3)]5[4(7+3)]-5

See Solution

Problem 4569

Rewrite the expression 8i32i\frac{8-i}{3-2 i} as a+bia+bi. What is the value of aa? A) 2 B) 83\frac{8}{3} C) 3 D) 113\frac{11}{3}

See Solution

Problem 4570

Evaluate the expression 3(5+4)33(5+4)-3.

See Solution

Problem 4571

Add the fractions 514\frac{5}{14} and 814\frac{8}{14}.

See Solution

Problem 4572

Calculate the expression: 5[4+3]+105[4+3]+10.

See Solution

Problem 4573

Calculate 9(75)÷39(7-5) \div 3.

See Solution

Problem 4574

Calculate 9(15)÷39(1-5) \div 3.

See Solution

Problem 4575

Calculate: 5(2012)÷45(20-12) \div 4

See Solution

Problem 4576

Factor the trinomial.
50+15x2+x450 + 15x^2 + x^4
x2(x2+15)+50x^2(x^2 + 15) + 50
Suggested tutorial: Learn ... Factor trinomials ... Your answer is incorrect
Need Help? Read It Watch It

See Solution

Problem 4577

(0.4k32.5k)(2.4k3+3k21.2k)=\left(0.4 k^{3}-2.5 k\right)-\left(2.4 k^{3}+3 k^{2}-1.2 k\right)= 2.8k33k23.7k-2.8 k^{3}-3 k^{2}-3.7 k 2.8k3+3k21.3k-2.8 k^{3}+3 k^{2}-1.3 k 2k33k21.3k-2 k^{3}-3 k^{2}-1.3 k 2k3+3k23.7k-2 k^{3}+3 k^{2}-3.7 k

See Solution

Problem 4578

Simplify sin(8t)+sin(2t)cos(8t)+cos(2t)\frac{\sin(8t) + \sin(2t)}{\cos(8t) + \cos(2t)} to an expression involving a single trigonometric function.

See Solution

Problem 4579

Perform the operation and simplify the result when possible. xx2+5x+6+xx24\frac{x}{x^2 + 5x + 6} + \frac{x}{x^2 - 4} Submit Answer

See Solution

Problem 4580

5 Homework
Find the middle term of (4u3+2v2)10\left(4 u^{3}+2 v^{2}\right)^{10}.
The middle term of (4u3+2v2)10\left(4 u^{3}+2 v^{2}\right)^{10} is \square (Simplify your answer.)

See Solution

Problem 4581

Question 5
Watch the video that describes using summation notation. Click here to watch the video. Evaluate the sum. j=110(j+3)\sum_{j=1}^{10}(j+3) j=110(j+3)=\sum_{j=1}^{10}(j+3)= \square (Simplify your answer.)

See Solution

Problem 4582

(sin(5x))4=12cos(x)+18cos(x)(\sin(5x))^4 = \boxed{} - \frac{1}{2}\cos(\boxed{}x) + \frac{1}{8}\cos(\boxed{}x)

See Solution

Problem 4583

Perform the division. 7x7y6+14x5y21xy77x6y6\frac{7x^7y^6 + 14x^5y - 21xy^7}{-7x^6y^6} x2xy5+3yx6-x - \frac{2}{xy^5} + \frac{3y}{x^6} x2xy6+3yx5-x - \frac{2}{xy^6} + \frac{3y}{x^5} x2xy53yx5-x - \frac{2}{xy^5} - \frac{3y}{x^5} x+2xy53yx5x + \frac{2}{xy^5} - \frac{3y}{x^5} x2xy5+3yx5-x - \frac{2}{xy^5} + \frac{3y}{x^5} Submit Answer

See Solution

Problem 4584

Simplify: (8a2b3)28ab2\frac{(8a^2b^3)^2}{8ab^2}
Entry Tips:
1. Use ^ (shift+6) for exponents. To type x2x^2 type "x^2"
2. Use parenthesis if there is more than one "thing" in the numerator or denominator. To type 2ac4\frac{2a}{c-4} type "(2a)/(c-4)". (2a)(c4) \frac{(2a)}{(c-4)} .

See Solution

Problem 4585

z8z3=z^{-8} \cdot z^{-3} = First use the product rule to multiply the terms and then rewrite the expression using positive exponents. (Simplify your answer. Use positive exponents only.) This test: 35 point(s) possible This question: 1 point(s) possible Question 1 of 35

See Solution

Problem 4586

Convert to decimal notation.
8.551078.55 \cdot 10^7
8.55107=8.55 \cdot 10^7 =
(Simplify your answer. Type an integer or a decimal.)

See Solution

Problem 4587

Simplify. a. 727^2 b. 727^{-2} c. (17)2(\frac{1}{7})^2 d. (17)2(\frac{1}{7})^{-2} e. 72-7^2 f. (7)2(-7)^2
a. 72=7^2 = \square b. 72=7^{-2} = \square c. (17)2=(\frac{1}{7})^2 = \square d. (17)2=(\frac{1}{7})^{-2} = \square e. 72=-7^2 = \square f. (7)2=(-7)^2 = \square

See Solution

Problem 4588

Simplify. (np)4(np)^4
Choose the simplified form of (np)4(np)^4. A. n5p5n^5 p^5 B. np5np^5 C. n4p4n^4 p^4 D. np4np^4 Question 32 of 35

See Solution

Problem 4589

Simplify (f4)9(f^{-4})^{-9} (f4)9= (f^4)^{-9} = \Box (Simplify your answer. Type exponential notation using

See Solution

Problem 4590

What is the meaning of this expression? 434^3 = ▢ (Type your answer as a product. Do not simplify.)

See Solution

Problem 4591

What is 4×211-4 \times \frac{2}{11}? Give your answer in its simplest form.

See Solution

Problem 4592

54. Seja z=ii+1+1iz = \frac{i}{i+1} + \frac{1}{i}
a) Obtenha a forma algébrica e a trigonométrica de zz.
b) Qual é a forma trigonométrica de z2z^2?

See Solution

Problem 4593

56. Obtenha a forma algébrica de cada um dos seguintes números complexos: a) z=4(cos120+isin120)z = 4(\cos 120^\circ + i \sin 120^\circ) b) z=3(cos90+isin90)z = 3(\cos 90^\circ + i \sin 90^\circ) c) z=cos210+isin210z = \cos 210^\circ + i \sin 210^\circ d) z=2(cos135+isin135)z = \sqrt{2}(\cos 135^\circ + i \sin 135^\circ)

See Solution

Problem 4594

1.250.2=1.25^{-0.2} = (53)2.2=\left(\frac{5}{3}\right)^{2.2} =

See Solution

Problem 4595

12. Find the sum of the expressions (11.8t1.9) (11.8t - 1.9) and (7t+6.5) (-7t + 6.5) .

See Solution

Problem 4596

(b) (x2y4x3z5)3\left(\frac{x^2y^{-4}}{x^{-3}z^5}\right)^3

See Solution

Problem 4597

Eompleta la tabella, applicando le proprietà delle potenze. \begin{tabular}{l|l|l|} \hline(4)3(4)5=(-4)^{-3} \cdot(-4)^{-5}= & (+7)2(+7)2(+7)3=(+7)^{-2} \cdot(+7)^{-2} \cdot(+7)^{-3}= & (5)8(5)4=(-5)^{-8} \cdot(-5)^{-4}= \\ \hline(3)6:(3)8=(-3)^{6}:(-3)^{8}= & (+9)6:(+9)6=(+9)^{-6}:(+9)^{-6}= & (2)3:(2)2=(-2)^{-3}:(-2)^{-2}= \\ \hline[(2)3]1=\left[(-2)^{-3}\right]^{-1}= & {[(+5)2]0=\left[(+5)^{-2}\right]^{0}=} & {[(4)2]4=\left[(-4)^{-2}\right]^{-4}=} \\ \hline(2)3(5)3=(-2)^{-3} \cdot(-5)^{-3}= & (+4)2(3)2=(+4)^{-2} \cdot(-3)^{-2}= & (6)5(+2)5=(-6)^{-5} \cdot(+2)^{-5}= \\ \hline(+6)4:(+2)4=(+6)^{-4}:(+2)^{-4}= & (12)3:(2)3=(-12)^{-3}:(-2)^{-3}= & (+18)2:(6)2=(+18)^{-2}:(-6)^{-2}= \\ \hline \end{tabular} 117

See Solution

Problem 4598

Simplify. 6u3w42u3v2+10u\frac{6u^3 w^4}{2u^3 v^2 + 10u}

See Solution

Problem 4599

14) 10xy15x2y210 x y-15 x^{2} y^{2}

See Solution

Problem 4600

2loga(8x3)17loga(4x+11)=2 \log_{a}(8x^3) - \frac{1}{7} \log_{a}(4x+11) = \square (Simplify your answer.)

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord