Matrix

Problem 501

MATh140 Second Firstsem-2024-2025, (161745)(-4) mentie
Question 8 of 18 A matrix that is both sympetric and upper triangular must be a diagonal matrix. True Falle

See Solution

Problem 502

Question 16 of 18 Let AA be 2×22 \times 2 matrix with det(A)=2\operatorname{det}(A)=-2, then det(4A1)=\operatorname{det}\left(4 A^{-1}\right)= 8 - 2 2 1/81 / 8

See Solution

Problem 503

Calculate nn using the formula n=AB×ACn = A \cdot B \times A C and the determinant 311213\left| \begin{array}{ccc} 3 & 1 & 1 \\ 2 & -1 & -3 \end{array} \right|.

See Solution

Problem 504

The weather on any given day in a particular city can be sunny, cloudy, or rainy. It has been observed to be predictable largely on the basis of the weather on the previous day. Specifically:
- if it is sunny on one day, it will be sunny the next day 13\frac{1}{3} of the time, and be cloudy the next day 23\frac{2}{3} of the time - if it is cloudy on one day, it will be sunny the next day 23\frac{2}{3} of the time, and be cloudy the next day 16\frac{1}{6} of the time - if it is rainy on one day, it will be sunny the next day 16\frac{1}{6} of the time, and be cloudy the next day 13\frac{1}{3} of the time
Using 'sunny', 'cloudy', and 'rainy' (in that order) as the states in a system, set up the transition matrix for a Markov chain to describe this system.
Use your matrix to determine the probability that it will rain on Thursday if it is sunny on Sunday.
P=[000000000]P=\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]
Probability of rain on Thursday =0=0

See Solution

Problem 505

浙江科技大学考试试卷
4. The state of plane stress at a point with respect to the xyx y-axes is shown in Figure. Determine the principal stresses and principal planes. Show the results on a sketch of an element aligned with the principal directions. (25 points)

See Solution

Problem 506

If [371][536]=[x1]\left[\begin{array}{lll}3 & 7 & 1\end{array}\right] \cdot\left[\begin{array}{l}5 \\ 3 \\ 6\end{array}\right]=\left[x_{1}\right], what is the value of x1x_{1} ? If the matrix operation is not possible, write "none".

See Solution

Problem 507

Given matrix AA and vector b\mathbf{b}, determine if b\mathbf{b} is in the span of columns of AA. How many vectors are in this span?

See Solution

Problem 508

Given matrix AA and vector bb, check if bb is in the span of columns of AA. How many vectors are in the set?

See Solution

Problem 509

Given matrix AA and vector bb, determine if bb is in the span of columns of AA. How many vectors are in this span?

See Solution

Problem 510

Ms. Lowell's class has a decimal chart. Answer these:
5. What pattern do you see moving left to right?
6. How does the last square in each row differ?
7. What pattern do you observe moving down a column?

See Solution

Problem 511

Fill in the missing values in the table using totals. If unknown + 67 = 99, then unknown = 32. Total students who play sports and an instrument = 35.

See Solution

Problem 512

Temukan nilai eigen dan vektor eigen dan matriks A -3 3 3-5 3 6-64

See Solution

Problem 513

1. Temukan nilai eigen dan vektor eigen dari matriks A=[133353664]A=\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]

See Solution

Problem 514

LATIHAN
1. Temukan nilai eigen dan vektor eigen dari matriks A=[133353664]A=\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]
2. Temukan nilai eigen dan vektor eigen dari matriks A=[0123]A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]

See Solution

Problem 515

Find the vector of stable probabilities for the Markov chain whose transition matrix is [0.10.80.1100100]W=\begin{array}{c} {\left[\begin{array}{ccc} 0.1 & 0.8 & 0.1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right]} \\ W= \end{array} \square \square

See Solution

Problem 516

[4] If A1=[3211]A^{-1}=\left[\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right] and B1=[1134]B^{-1}=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right], and (AB)1=[xzyh](A B)^{-1}=\left[\begin{array}{ll}x & z \\ y & h\end{array}\right], then x+y+z+hx+y+z+h a) -10 b) 3 c) 8 d) 20 [5] If abcdefghijklmnop=3\left|\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right|=-3, then det(2[abcdefghijklmnop])=\operatorname{det}\left(2\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]\right)= a) -6 b) -48 c) -12 d) -32 [6] The linear system given by AX=BA X=B where AA is 2×22 \times 2 square matrix, Ax=[2161]A_{x}=\left[\begin{array}{cc}2 & -1 \\ 6 & 1\end{array}\right] and Ay=[3216]A_{y}=\left[\begin{array}{ll}3 & 2 \\ 1 & 6\end{array}\right], then X=X= a) [24]\left[\begin{array}{l}2 \\ 4\end{array}\right] b) [24]\left[\begin{array}{c}-2 \\ 4\end{array}\right] c) [42]\left[\begin{array}{l}4 \\ 2\end{array}\right] d) [42]\left[\begin{array}{l}-4 \\ -2\end{array}\right]
Q2: Write (T) for the correct statement and (F) for the false one [1] \qquad If A=A1|A|=\left|A^{-1}\right| then A|A| must equal to 1. [2] \qquad If A=[2]A=[-\sqrt{2}] then A1=[22]A^{-1}=\left[-\frac{\sqrt{2}}{2}\right] [3] \qquad 3ATA3 A^{\mathrm{T}} A is a symmetric matrix. [4] \qquad The matrix A=[1530020800100002]A=\left[\begin{array}{cccc}1 & 5 & -3 & 0 \\ 0 & -2 & 0 & 8 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right] is singular.

See Solution

Problem 517

KEA CY PA-Common Core Mat 122.core.learn.edgenuity.com/player/ et bookmarks Edgenuity Scanlon PLC HR 6-74 Downloads HMH Central Login Is Is WP\overline{W P} Home - William Pen Cool Math Games - Common Core Math 8 Q2 1 2 8 4 ( 8 6 7 8 9 10 TIMEREMAINING 58:47
The lunch coordinator is recording the drink choices of the students in her school. She has partially completed the table. Which describes the variables in the two-way table? \begin{tabular}{|c|c|c|c|} \hline \multicolumn{4}{|c|}{ Lunch Drinks } \\ \hline & Milk & Water & Total \\ \hline Girls & & 52 & 85 \\ \hline Boys & 41 & & 93 \\ \hline Total & & & \\ \hline \hline \end{tabular} gender and number who chose milk gender and drink choice number who chose milk and number of boys number who chose milk and total students

See Solution

Problem 518

What dimensions must matrix AA have to map R6\mathbb{R}^{6} to R7\mathbb{R}^{7} using T(x)=AxT(\mathbf{x})=A \mathbf{x}? A. 6 rows, 7 columns B. 6 rows, 6 columns C. 7 rows, 6 columns D. 7 rows, 7 columns

See Solution

Problem 519

Find all x\mathbf{x} in R4\mathbb{R}^{4} such that Ax=0A \mathbf{x} = \mathbf{0} for the matrix A=[1271103401231574]A=\begin{bmatrix} 1 & 2 & 7 & -1 \\ 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 3 \\ -1 & 5 & 7 & 4 \end{bmatrix}. Choose A, B, C, or D.

See Solution

Problem 520

Score I 、Fill in the blanks. (Questions 1 to 5 carry 2 marks each. 10 marks totally.)
1. Let u=(2,5,3),v=(4,1,9)\vec{u}=(2,5,-3), \vec{v}=(-4,1,9). Then 2u3v=2 \vec{u}-3 \vec{v}= \qquad
2. The dot product of u=(1,2,4)\vec{u}=(1,-2,4) and v=(3,1,2)\vec{v}=(3,1,2) is \qquad .
3. The trace of the matrix A=(412236730)A=\left(\begin{array}{ccc}4 & 1 & -2 \\ 2 & -3 & 6 \\ 7 & 3 & 0\end{array}\right) is \qquad .
4. A square matrix AA is said to be singular if \qquad
5. The distance between the noints γ1\vec{\gamma}-1

See Solution

Problem 521

7. Let A,BA, B and CC be n×nn \times n matrices. II is an n×nn \times n matrix. The following statement is correct ( ). A. If AB=ACA B=A C and A0A \neq 0, then B=CB=C. B. If A2=AA^{2}=A, then A=0A=0 or A=IA=I. C. If A2=0A^{2}=0, then A=0A=0. D. If AB=BAA B=B A, then (A+B)2=A2+2AB+B2(A+B)^{2}=A^{2}+2 A B+B^{2}.

See Solution

Problem 522

8. Let A,BA, B be invertible 3×33 \times 3 matrices. The following conclusion is correct ( ). A. (A+B)1=A1+B1(A+B)^{-1}=A^{-1}+B^{-1} B. (AB)1=A1B1(A B)^{-1}=A^{-1} B^{-1} C. (AB)t=BtAt(A B)^{t}=B^{t} A^{t} D. 3A=3A|3 A|=3|A|
9. The cofactor C21C_{21} of matrix (123506714)\left(\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 6 \\ 7 & 1 & -4\end{array}\right) is ()(\quad). A. 5 B. -1 C. -5 D. 1
10. Let AA be an n×nn \times n matrix and A=2|A|=2. Then AAt=()\left||A| A^{t}\right|=(\quad). A. 2n2^{n} B. 2n12^{n-1} C. 2n+12^{n+1} D. 4 III. Solve the questions. (Questions 11 to 15 carry 10 marks each. 50 marks Score totally.)
11. Let A=[342512],B=[121143],C=[5221]A=\left[\begin{array}{ccc}3 & 4 & -2 \\ 5 & -1 & 2\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & -2 & 1 \\ 1 & -4 & 3\end{array}\right], \quad C=\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]. Compute 2A3B,CA2 A-3 B, C A.

See Solution

Problem 523

Find the standard matrix for the linear transformation T:R2R2T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} that rotates points by 5π4-\frac{5 \pi}{4} radians. A=A=

See Solution

Problem 524

Find the standard matrix of the linear transformation TT that reflects points first through x2=x1x_{2}=-x_{1} and then the x2x_{2}-axis. A=A= (Enter values for each matrix element.)

See Solution

Problem 525

How many rows and columns must matrix AA have to map R8\mathbb{R}^{8} to R9\mathbb{R}^{9} using T(x)=AxT(x)=A x? A. 9 rows, 9 columns B. 9 rows, 8 columns C. 8 rows, 8 columns D. 8 rows, 9 columns

See Solution

Problem 526

Find all x\mathbf{x} in R4\mathbb{R}^{4} such that Ax=0A \mathbf{x} = \mathbf{0} for the matrix A=[14168104401342084]A = \begin{bmatrix} 1 & 4 & 16 & 8 \\ 1 & 0 & 4 & -4 \\ 0 & 1 & 3 & 4 \\ -2 & 0 & -8 & -4 \end{bmatrix}.

See Solution

Problem 527

Find the standard matrix of the linear transformation T:R3R2T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} given T(e1)=(1,9)T(\mathbf{e}_{1})=(1,9), T(e2)=(4,6)T(\mathbf{e}_{2})=(-4,6), T(e3)=(9,8)T(\mathbf{e}_{3})=(9,-8). A=A=\square (Type an integer or decimal for each matrix element.)

See Solution

Problem 528

Find the standard matrix for the linear transformation TT that rotates points in R2\mathbb{R}^2 by π2-\frac{\pi}{2} radians. A= A = (Enter exact values for each matrix element.)

See Solution

Problem 529

Determine the determinant D=052430242D=\left|\begin{array}{ccc}0 & 5 & 2 \\ 4 & -3 & 0 \\ 2 & 4 & 2\end{array}\right|
Let u=(3,1,2)\vec{u}=(3,-1,2) and v=(4,1,1)\vec{v}=(4,1,1). Normalize the vector u\vec{u}. Determine the cosines of the angles between u\vec{u} and

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord