Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
Math
Problem 65301
Calculate
10
×
5
10 \times 5
10
×
5
.
See Solution
Problem 65302
Find the value of
2
x
−
2
3
−
3
x
\frac{2 x-2}{3-3 x}
3
−
3
x
2
x
−
2
for
x
≠
1
x \neq 1
x
=
1
. Choose from: a. -1 b.
2
3
\frac{2}{3}
3
2
c.
−
2
3
-\frac{2}{3}
−
3
2
d.
−
2
3
x
-\frac{2}{3 x}
−
3
x
2
.
See Solution
Problem 65303
Find the value of
f
(
x
)
f(x)
f
(
x
)
for the function
f
(
x
)
=
1
2
(
5
x
−
1
)
f(x)=\frac{1}{2}(5 x-1)
f
(
x
)
=
2
1
(
5
x
−
1
)
.
See Solution
Problem 65304
Find the next two numbers in the sequence:
1
,
1
3
4
,
2
1
2
,
3
1
4
1, 1 \frac{3}{4}, 2 \frac{1}{2}, 3 \frac{1}{4}
1
,
1
4
3
,
2
2
1
,
3
4
1
.
See Solution
Problem 65305
Next two numbers in the sequence:
7.5
,
8.75
,
10
,
11.25
7.5, 8.75, 10, 11.25
7.5
,
8.75
,
10
,
11.25
. What are they?
See Solution
Problem 65306
Find the distance from City A to City C, given bearings and travel times. Round to the nearest mile.
See Solution
Problem 65307
Simplify:
x
−
3
3
−
x
\frac{x-3}{3-x}
3
−
x
x
−
3
for
x
≠
3
x \neq 3
x
=
3
. Choose the correct answer: a. -1, b.
x
2
+
3
x^{2}+3
x
2
+
3
, c. 1, d. -3.
See Solution
Problem 65308
A. Compare the downstream speed of a barge traveling 120 miles in 8 hours to its upstream speed of 100 miles in 10 hours.
See Solution
Problem 65309
Dave cleans pools at 5 pools/hour. What is the ratio of pools to hours?
See Solution
Problem 65310
Round 739.96 to: a) nearest whole number, b) one significant figure, c) one decimal place.
See Solution
Problem 65311
Cari turunan
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
dari fungsi
f
(
x
)
=
sin
2
x
+
cos
3
x
f(x)=\sin ^{2} x+\cos 3 x
f
(
x
)
=
sin
2
x
+
cos
3
x
.
See Solution
Problem 65312
How many joules are in a bag of chips labeled
245
C
a
l
245 \mathrm{Cal}
245
Cal
?
See Solution
Problem 65313
Calculate
−
2
9
10
÷
1
3
-2 \frac{9}{10} \div \frac{1}{3}
−
2
10
9
÷
3
1
.
See Solution
Problem 65314
Divide 2 by 315 using long division without decimals:
2
315
\frac{2}{315}
315
2
.
See Solution
Problem 65315
Find the height of a stone face on a mountain, given angles of elevation of
2
8
∘
28^{\circ}
2
8
∘
and
3
1
∘
31^{\circ}
3
1
∘
from 800 feet away.
See Solution
Problem 65316
Calculate
315
21
\frac{315}{21}
21
315
.
See Solution
Problem 65317
Find the composition of the functions
f
(
x
)
=
x
2
f(x)=x^{2}
f
(
x
)
=
x
2
and
g
(
x
)
=
x
−
3
g(x)=x-3
g
(
x
)
=
x
−
3
: compute
f
(
g
(
x
)
)
f(g(x))
f
(
g
(
x
))
.
See Solution
Problem 65318
Add the numbers 456,791 and 265,513.
See Solution
Problem 65319
Multiply
9
10
\frac{9}{10}
10
9
by the mixed number
2
1
3
2 \frac{1}{3}
2
3
1
.
See Solution
Problem 65320
Graph the line for the equation
x
−
y
=
2
x - y = 2
x
−
y
=
2
.
See Solution
Problem 65321
Find the derivative of
y
=
sin
3
x
−
cos
3
x
y=\sin 3x - \cos 3x
y
=
sin
3
x
−
cos
3
x
at
x
=
4
5
∘
x=45^{\circ}
x
=
4
5
∘
.
See Solution
Problem 65322
Solve these problems: f.
12
÷
7
8
12 \div \frac{7}{8}
12
÷
8
7
g.
1
2
3
+
(
−
2
5
)
1 \frac{2}{3}+\left(-\frac{2}{5}\right)
1
3
2
+
(
−
5
2
)
h.
4
7
−
(
−
3
8
)
\frac{4}{7}-\left(-\frac{3}{8}\right)
7
4
−
(
−
8
3
)
i.
−
4.05
+
3.18
-4.05+3.18
−
4.05
+
3.18
See Solution
Problem 65323
Divide 12 by
7
8
\frac{7}{8}
8
7
and verify that
21
10
=
2
1
10
\frac{21}{10}=2 \frac{1}{10}
10
21
=
2
10
1
.
See Solution
Problem 65324
What is the final temperature of a 50.0 g glass piece after absorbing 5275 J of heat, starting at 20.0°C with a specific heat of 0.50 J/g°C?
See Solution
Problem 65325
Find the distance between marinas at
P
(
4
,
2
)
P(4,2)
P
(
4
,
2
)
and
Q
(
8
,
12
)
Q(8,12)
Q
(
8
,
12
)
on a map where 1 unit = 1 km. Choices: A. 14 km B.
2
29
2 \sqrt{29}
2
29
km C. 6 km D.
2
5
2 \sqrt{5}
2
5
km
See Solution
Problem 65326
Calculate
1
2
3
+
(
−
2
5
)
1 \frac{2}{3} + \left(-\frac{2}{5}\right)
1
3
2
+
(
−
5
2
)
and
4
7
−
(
−
3
8
)
\frac{4}{7} - \left(-\frac{3}{8}\right)
7
4
−
(
−
8
3
)
.
See Solution
Problem 65327
Find the perimeter of trapezoid
A
B
C
D
ABCD
A
BC
D
with vertices
A
(
−
2
,
4
)
A(-2,4)
A
(
−
2
,
4
)
,
B
(
2
,
4
)
B(2,4)
B
(
2
,
4
)
,
C
(
4
,
−
3
)
C(4,-3)
C
(
4
,
−
3
)
, and
D
(
−
2
,
−
3
)
D(-2,-3)
D
(
−
2
,
−
3
)
.
See Solution
Problem 65328
Find the length
l
l
l
of a rectangle with area
25
i
n
2
25 \mathrm{in}^2
25
in
2
and width
w
=
10
i
n
w = 10 \mathrm{in}
w
=
10
in
. Use
A
=
l
w
A = l w
A
=
lw
.
See Solution
Problem 65329
Find the specific heat of a
4.11
g
4.11 \mathrm{~g}
4.11
g
silicon sample that rises by
3.
8
∘
C
3.8^{\circ} \mathrm{C}
3.
8
∘
C
with
11.1
J
11.1 \mathrm{~J}
11.1
J
added.
See Solution
Problem 65330
Find the length
l
l
l
of a rectangle with area
A
=
25
i
n
2
A=25 \mathrm{in}^2
A
=
25
in
2
for widths
w
=
10
w=10
w
=
10
and
w
=
15
w=15
w
=
15
inches.
See Solution
Problem 65331
Convert
9.75
×
1
0
5
c
a
l
9.75 \times 10^{5} \mathrm{cal}
9.75
×
1
0
5
cal
to kJ.
See Solution
Problem 65332
Graph the inequality for elevator speeds outside the range of 116 to 124 feet per minute:
s
<
116
s < 116
s
<
116
or
s
>
124
s > 124
s
>
124
.
See Solution
Problem 65333
Divide and simplify:
3
7
÷
6
=
\frac{3}{7} \div 6 =
7
3
÷
6
=
See Solution
Problem 65334
Find the derivative of the function
f
(
x
)
=
x
cos
3
x
f(x)=\sqrt{x} \cos^{3} x
f
(
x
)
=
x
cos
3
x
. What is
f
′
(
x
)
f^{\prime}(x)
f
′
(
x
)
?
See Solution
Problem 65335
How many bags of chips provide
14.6
×
1
0
3
k
J
14.6 \times 10^{3} \mathrm{~kJ}
14.6
×
1
0
3
kJ
of energy to store
1
l
b
1 \mathrm{lb}
1
lb
of body fat?
See Solution
Problem 65336
Graph the inequality for the elevator's speed outside the range of 116 to 124 feet per minute:
x
<
116
x < 116
x
<
116
or
x
>
124
x > 124
x
>
124
.
See Solution
Problem 65337
Find point J if D is the midpoint of HJ, with D at
(
−
3
,
4
)
(-3,4)
(
−
3
,
4
)
and H at
(
9
,
−
6
)
(9,-6)
(
9
,
−
6
)
. Where is J? A.
(
−
15
,
14
)
(-15,14)
(
−
15
,
14
)
B.
(
21
,
−
16
)
(21,-16)
(
21
,
−
16
)
C.
(
3
,
−
1
)
(3,-1)
(
3
,
−
1
)
D.
(
6
,
−
2
)
(6,-2)
(
6
,
−
2
)
See Solution
Problem 65338
Find the composition of the functions
f
(
x
)
=
x
2
f(x)=x^{2}
f
(
x
)
=
x
2
and
g
(
x
)
=
x
−
3
g(x)=x-3
g
(
x
)
=
x
−
3
: calculate
g
(
f
(
x
)
)
g(f(x))
g
(
f
(
x
))
.
See Solution
Problem 65339
Elsa, Chau, and Manuel served 105 orders total. Elsa served 5 more than Chau, and Manuel served 3 times Chau. Find their orders.
See Solution
Problem 65340
Find the length
l
l
l
of a rectangle with area
25
i
n
2
25 \mathrm{in}^{2}
25
in
2
for widths
w
=
10
w = 10
w
=
10
in and
w
=
15
w = 15
w
=
15
in. Rearrange
A
=
l
w
A = lw
A
=
lw
.
See Solution
Problem 65341
How many kilojoules of heat energy are absorbed by 0.750 pint of water heated from room temp to boiling?
See Solution
Problem 65342
Calculate the perimeter of parallelogram
A
B
C
D
ABCD
A
BC
D
with vertices
A
(
1
,
7
)
A(1,7)
A
(
1
,
7
)
,
B
(
5
,
4
)
B(5,4)
B
(
5
,
4
)
,
C
(
0
,
−
5
)
C(0,-5)
C
(
0
,
−
5
)
, and
D
(
−
4
,
−
2
)
D(-4,-2)
D
(
−
4
,
−
2
)
.
See Solution
Problem 65343
Calculate the perimeter of parallelogram
A
B
C
D
ABCD
A
BC
D
with vertices
A
(
1
,
7
)
A(1,7)
A
(
1
,
7
)
,
B
(
5
,
4
)
B(5,4)
B
(
5
,
4
)
,
C
(
0
,
−
5
)
C(0,-5)
C
(
0
,
−
5
)
, and
D
(
−
4
,
−
2
)
D(-4,-2)
D
(
−
4
,
−
2
)
.
See Solution
Problem 65344
How many pairs of shoes are in total at both stores if Orem has 8,947 and Provo has 12,783? Calculate:
8
,
947
+
12
,
783
8,947 + 12,783
8
,
947
+
12
,
783
.
See Solution
Problem 65345
A rectangle has area
A
=
25
i
n
2
A = 25 \mathrm{in}^2
A
=
25
in
2
. If
w
=
10
w = 10
w
=
10
in, find
l
l
l
. If
w
=
15
w = 15
w
=
15
in, find
l
l
l
. Rearrange
A
=
l
w
A = lw
A
=
lw
for
l
l
l
.
See Solution
Problem 65346
Find
a
,
b
,
c
,
d
a, b, c, d
a
,
b
,
c
,
d
for
f
(
x
)
f(x)
f
(
x
)
to be continuous, where:
f
(
x
)
=
{
x
2
+
x
−
2
x
−
1
if
x
<
1
a
if
x
=
1
b
(
x
−
c
)
2
if
1
<
x
<
4
d
if
x
=
4
2
x
−
8
if
x
>
4
f(x) = \begin{cases} \frac{x^2+x-2}{x-1} & \text{if } x<1 \\ a & \text{if } x=1 \\ b(x-c)^2 & \text{if } 1<x<4 \\ d & \text{if } x=4 \\ 2x-8 & \text{if } x>4 \end{cases}
f
(
x
)
=
⎩
⎨
⎧
x
−
1
x
2
+
x
−
2
a
b
(
x
−
c
)
2
d
2
x
−
8
if
x
<
1
if
x
=
1
if
1
<
x
<
4
if
x
=
4
if
x
>
4
See Solution
Problem 65347
Calculate the heat needed to raise the temperature of an
8.21
g
8.21 \mathrm{~g}
8.21
g
gold sample by
6.
2
∘
C
6.2^{\circ} \mathrm{C}
6.
2
∘
C
with specific heat
0.13
J
/
g
∘
C
0.13 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
0.13
J
/
g
∘
C
.
See Solution
Problem 65348
Graph the solution to the inequality
−
2
<
2
x
+
6
<
20
-2 < 2x + 6 < 20
−
2
<
2
x
+
6
<
20
on a number line.
See Solution
Problem 65349
解不等式
2
x
−
6
>
−
16
2x - 6 > -16
2
x
−
6
>
−
16
和
3
x
−
10
≤
8
3x - 10 \leq 8
3
x
−
10
≤
8
。
See Solution
Problem 65350
Zoe and Yolanda's money ratio is
3
:
7
3:7
3
:
7
. Yolanda has \
64
m
o
r
e
t
h
a
n
Z
o
e
.
A
f
t
e
r
Y
o
l
a
n
d
a
g
i
v
e
s
64 more than Zoe. After Yolanda gives
64
m
ore
t
han
Z
oe
.
A
f
t
er
Y
o
l
an
d
a
g
i
v
es
\frac{1}{4}$ of her money to Zoe, find the new ratio.
See Solution
Problem 65351
What is 32,408 in base ten? (A) 32,480 (B) 32,408 (C) 30,248 (D) 30,240
See Solution
Problem 65352
How much will the temperature of a 15.4 g silver sample increase if 40.5 J of heat is added? (Specific heat: 0.235 J/g°C)
See Solution
Problem 65353
Find the value of
f
(
7
)
f(7)
f
(
7
)
for the function
f
(
x
)
=
2
x
2
−
6
f(x)=2 x^{2}-6
f
(
x
)
=
2
x
2
−
6
.
See Solution
Problem 65354
Write a slope-intercept equation for a geoduck's growth from 4 cm at age 10 to 18 cm at age 100.
See Solution
Problem 65355
Divide and simplify:
12
25
÷
4
=
\frac{12}{25} \div 4 =
25
12
÷
4
=
See Solution
Problem 65356
Graph the solution to the inequality:
5
x
−
17
>
8
5x - 17 > 8
5
x
−
17
>
8
or
−
4
x
−
2
≤
6
-4x - 2 \leq 6
−
4
x
−
2
≤
6
.
See Solution
Problem 65357
How many more tickets did the Felines sell than the Canines if they sold 6,224 and 4,038 tickets respectively?
See Solution
Problem 65358
Find the base
b
b
b
of a triangle when the area
A
=
100
A=100
A
=
100
and height
h
=
20
h=20
h
=
20
using
A
=
1
2
b
h
A=\frac{1}{2} b h
A
=
2
1
bh
.
See Solution
Problem 65359
Cindy paid \$241.80 in extra charges at \$20.15 per pound. How many pounds did her luggage exceed the limit?
See Solution
Problem 65360
How many thorium atoms (240 pm radius) fit in a distance of
1.40
m
m
1.40 \mathrm{~mm}
1.40
mm
?
See Solution
Problem 65361
Divide and simplify:
2
9
÷
2
3
=
\frac{2}{9} \div \frac{2}{3} =
9
2
÷
3
2
=
See Solution
Problem 65362
Graph the elevations where the service elevator doesn't stop: solve the inequality
4
<
x
15
<
16
4 < \frac{x}{15} < 16
4
<
15
x
<
16
for
x
x
x
.
See Solution
Problem 65363
Alvin rounded 336,457 to 340,000. What place did he round to? (A) Tens (B) Hundreds (C) Thousands (D) Ten thousands
See Solution
Problem 65364
Find the base
b
b
b
of a triangle with area
A
=
100
A=100
A
=
100
and height
h
=
20
h=20
h
=
20
using the formula
A
=
1
2
b
h
A=\frac{1}{2} b h
A
=
2
1
bh
.
See Solution
Problem 65365
Divide and simplify:
8
15
÷
4
5
=
\frac{8}{15} \div \frac{4}{5} =
15
8
÷
5
4
=
See Solution
Problem 65366
Find sums or differences that equal 12,492:
8
,
572
+
3
,
920
8,572+3,920
8
,
572
+
3
,
920
,
7
,
279
+
5
,
203
7,279+5,203
7
,
279
+
5
,
203
,
4
,
100
+
8
,
392
4,100+8,392
4
,
100
+
8
,
392
,
15
,
728
−
3
,
246
15,728-3,246
15
,
728
−
3
,
246
,
19
,
412
−
6
,
920
19,412-6,920
19
,
412
−
6
,
920
.
See Solution
Problem 65367
Factor the polynomial
x
3
+
3
x
2
−
4
x
−
12
x^{3}+3 x^{2}-4 x-12
x
3
+
3
x
2
−
4
x
−
12
.
See Solution
Problem 65368
Calculate the specific heat capacity of
25.0
g
25.0 \mathrm{~g}
25.0
g
of mercury heated from
25.
0
∘
C
25.0^{\circ} \mathrm{C}
25.
0
∘
C
to
15
5
∘
C
155^{\circ} \mathrm{C}
15
5
∘
C
with 455 J.
See Solution
Problem 65369
Calculate the temperature change of a 19.0 g aluminum can when 55 J of heat is added, using specific heat 0.903 J/g°C.
See Solution
Problem 65370
Find the derivative of the function
y
=
sin
x
+
cos
x
x
y=\frac{\sin x+\cos x}{x}
y
=
x
s
i
n
x
+
c
o
s
x
.
See Solution
Problem 65371
Find the volume in cubic centimeters
(
c
m
3
)
\left(\mathrm{cm}^{3}\right)
(
cm
3
)
of a single thorium atom, assuming it's a sphere.
See Solution
Problem 65372
Divide:
7
10
÷
3
8
=
\frac{7}{10} \div \frac{3}{8} =
10
7
÷
8
3
=
in simplest form.
See Solution
Problem 65373
Mr. Olson had
16
L
16 \mathrm{~L}
16
L
of paint. After using
3
L
250
m
l
3 \mathrm{~L} 250 \mathrm{ml}
3
L
250
ml
and
80
%
80\%
80%
of the rest, how much is left?
See Solution
Problem 65374
Divide and simplify:
1
3
÷
1
9
=
\frac{1}{3} \div \frac{1}{9} =
3
1
÷
9
1
=
See Solution
Problem 65375
Calculate how many thorium atoms (240 pm radius) are needed to span
1.40
m
m
1.40 \mathrm{~mm}
1.40
mm
.
See Solution
Problem 65376
Find values of
t
t
t
that make the expression
5
t
−
2
3
t
−
9
\frac{5 t-2}{3 t-9}
3
t
−
9
5
t
−
2
undefined. List them as
t
=
t=
t
=
.
See Solution
Problem 65377
Did Lilith walk more steps on Monday than Tuesday? Calculate the difference:
15
,
258
−
12
,
474
15,258 - 12,474
15
,
258
−
12
,
474
. Is 2,784 reasonable?
See Solution
Problem 65378
Find the domain restriction for the function
f
(
x
)
=
1
x
−
3
f(x) = \frac{1}{x-3}
f
(
x
)
=
x
−
3
1
. Explain your reasoning.
See Solution
Problem 65379
Graph the solution for the inequality
x
≤
−
1
x \leq -1
x
≤
−
1
.
See Solution
Problem 65380
Simplify the expression:
(
−
8
u
4
v
−
6
u
3
v
3
−
2
v
3
−
7
u
v
4
)
−
(
−
4
u
3
v
3
−
8
v
3
−
4
u
v
4
−
5
u
4
v
)
+
(
3
u
v
4
−
8
u
3
v
3
−
v
3
+
4
u
3
v
4
)
(-8 u^{4} v - 6 u^{3} v^{3} - 2 v^{3} - 7 u v^{4}) - (-4 u^{3} v^{3} - 8 v^{3} - 4 u v^{4} - 5 u^{4} v) + (3 u v^{4} - 8 u^{3} v^{3} - v^{3} + 4 u^{3} v^{4})
(
−
8
u
4
v
−
6
u
3
v
3
−
2
v
3
−
7
u
v
4
)
−
(
−
4
u
3
v
3
−
8
v
3
−
4
u
v
4
−
5
u
4
v
)
+
(
3
u
v
4
−
8
u
3
v
3
−
v
3
+
4
u
3
v
4
)
.
See Solution
Problem 65381
Find the derivative
f
′
(
π
)
f^{\prime}(\pi)
f
′
(
π
)
for the function
f
(
x
)
=
1
1
+
cos
x
f(x)=\frac{1}{1+\cos x}
f
(
x
)
=
1
+
c
o
s
x
1
.
See Solution
Problem 65382
Calculate
3
2
3^{2}
3
2
and simplify your answer.
See Solution
Problem 65383
Factor the expression
2
x
3
+
6
x
2
−
8
x
−
24
2 x^{3}+6 x^{2}-8 x-24
2
x
3
+
6
x
2
−
8
x
−
24
.
See Solution
Problem 65384
Rewrite the quadratic
x
2
+
8
x
−
3
x^{2}+8x-3
x
2
+
8
x
−
3
in vertex form
y
=
(
x
+
h
)
2
+
k
y=(x+h)^{2}+k
y
=
(
x
+
h
)
2
+
k
by completing the square. Choose a step:
1.
y
=
x
2
+
8
x
+
8
−
3
−
8
y=x^{2}+8x+8-3-8
y
=
x
2
+
8
x
+
8
−
3
−
8
2.
y
=
x
2
+
8
x
+
8
−
3
+
8
y=x^{2}+8x+8-3+8
y
=
x
2
+
8
x
+
8
−
3
+
8
3.
y
=
x
2
+
8
x
+
16
−
3
−
16
y=x^{2}+8x+16-3-16
y
=
x
2
+
8
x
+
16
−
3
−
16
4.
y
=
x
2
+
8
x
+
16
−
3
+
16
y=x^{2}+8x+16-3+16
y
=
x
2
+
8
x
+
16
−
3
+
16
See Solution
Problem 65385
What interval does the inequality
x
≤
−
1
x \leq -1
x
≤
−
1
represent?
See Solution
Problem 65386
Calculate
(
−
8
)
2
(-8)^{2}
(
−
8
)
2
. What is the result?
See Solution
Problem 65387
A car's tank is
80
%
80\%
80%
full. After using
30
%
30\%
30%
of that fuel, it needs 19 gallons to fill up. Find the tank's full capacity.
See Solution
Problem 65388
Simplify the expression:
7
x
3
3
\sqrt{\frac{7 x^{3}}{3}}
3
7
x
3
See Solution
Problem 65389
Calculate
(
−
7
)
2
(-7)^{2}
(
−
7
)
2
. What is the result?
See Solution
Problem 65390
What interval does the inequality
x
≥
5
x \geq 5
x
≥
5
represent?
See Solution
Problem 65391
A group of hikers descended 1,200 feet in 3 hours. What was the change in elevation per hour? Answer: 400.
See Solution
Problem 65392
Write a cost function for a ski resort that charges \$20 plus \$4.25 per hour. Identify the correct variable.
See Solution
Problem 65393
Calculate
(
3
8
)
2
\left(\frac{3}{8}\right)^{2}
(
8
3
)
2
.
See Solution
Problem 65394
Choose the correct verbal expression for
4
s
−
4
4s - 4
4
s
−
4
, where
s
s
s
is the side length of a square.
See Solution
Problem 65395
Find the weight of one mole of pennies if a dozen weigh
6.022
×
1
0
23
6.022 \times 10^{23}
6.022
×
1
0
23
grams.
See Solution
Problem 65396
Solve the inequality
−
5
z
+
6
≥
−
3
z
−
4
-5z + 6 \geq -3z - 4
−
5
z
+
6
≥
−
3
z
−
4
and express the solution in interval notation.
See Solution
Problem 65397
Find the linear cost function
C
(
x
)
C(x)
C
(
x
)
given a fixed cost of \$300 and that producing 60 items costs \$3,300.
See Solution
Problem 65398
A scuba diver is at 82 feet deep and descends another 19 feet. What is his new depth as an integer?
See Solution
Problem 65399
Find the average cost per item given the cost function
C
(
x
)
=
18
x
+
1400
C(x)=18x+1400
C
(
x
)
=
18
x
+
1400
for producing 100 items. What is the average cost?
See Solution
Problem 65400
Simplify
(
−
1
2
)
5
=
□
\left(-\frac{1}{2}\right)^{5}=\square
(
−
2
1
)
5
=
□
(What is the result?)
See Solution
<
1
...
651
652
653
654
655
656
657
...
661
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms