Math Statement

Problem 3101

If 2+e3x=42+e^{3 x}=4, then solve for xx. Note: Round your answer to 2 decimal points and do not include any special characters. For example, if your answer is .1234, enter it as . 12. \square

See Solution

Problem 3102

27,28,29,30,31,32,33,34,3527,28,29,30,31,32,33,34,35, and 36 Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
33. x2+y2=(2x2+2y2x)2,(0,12)x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2},\left(0, \frac{1}{2}\right) (cardioid)

See Solution

Problem 3103

27,28,29,30,31,32,33,34,35\underline{27}, \underline{28}, \underline{29}, \underline{30}, \underline{31}, \underline{32}, \underline{33}, \underline{34}, \underline{35}, and 36\underline{36} Use implicit differentiation to find an equation of the tangent line to the curve at the given point. 3.
31. x2xyy2=1,(2,1)x^{2}-x y-y^{2}=1,(2,1) (hyperbola) Answer 4

See Solution

Problem 3104

In Exercises 3 and 4 , solve for yy in terms of xx.
3. y29+x24=1\frac{y^{2}}{9}+\frac{x^{2}}{4}=1
4. x236+y225=1\frac{x^{2}}{36}+\frac{y^{2}}{25}=1

See Solution

Problem 3105

a. Rewrite the equation 4x+y+3=04 x+y+3=0 in slope-intercept form. b. Give the slope and yy-intercept. c. Use the slope and yy-intercept to graph the linear function. a. The slope-intercept form of the equation is \square (Simplify your answer. Use integers or fractions for any numbers in the equation.) b. The slope of the equation of the line is \square and the yy-intercept is \square . (Type integers or fractions.)

See Solution

Problem 3106

Find RR and θ\theta given the components Rx=17.57R_{x}=17.57 and Ry=6.94R_{y}=6.94. R=\mathrm{R}=\square (Round to the nearest hundredth as needed.)

See Solution

Problem 3107

y=x5x225y=\frac{x-5}{x^{2}-25}

See Solution

Problem 3108

Factor the expression x3+3x254xx^{3} + 3x^{2} - 54x.

See Solution

Problem 3109

11. (x28x+15)÷(x3)\left(x^{2}-8 x+15\right) \div(x-3) x5x-5

See Solution

Problem 3110

Complete the table. \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{f(x)=x+1f(x)=-|x|+1} \\ \hlinexx & f(x)f(x) \\ \hline-5 & \square \\ \hline-3 & \square \\ \hline-1 & \square \\ \hline 1 & \square \\ \hline \end{tabular}

See Solution

Problem 3111

Factor the expression x33x240xx^{3}-3x^{2}-40x.

See Solution

Problem 3112

Complete the table. \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{f(x)=6x+3f(x)=-6|x|+3} \\ \hlinexx & f(x)f(x) \\ \hline-1 & \square \\ \hline 0 & \square \\ \hline 1 & \square \\ \hline 2 & \square \\ \hline \end{tabular}

See Solution

Problem 3113

11) 4(5)+41(42)\frac{-4(-5)+4}{-1(-4-2)}

See Solution

Problem 3114

XERCICE 1: 6 points À l'aide des théorémes de comparaison, étudier les limites suivantes: a) limx+xsin(x)2+sin(x)(1,5pt)\lim _{x \rightarrow+\infty} \frac{x-\sin (x)}{2+\sin (x)}(1,5 \mathrm{pt}) b) limxcos(x)x2x+1(1,5pt)\lim _{x \rightarrow-\infty} \frac{\cos (x)-x}{2 x+1}(1,5 \mathrm{pt})

See Solution

Problem 3115

Use elimination to solve each system below.
System 1 System 2 3x4y=63x4y=3x+4y=184x3y=10\begin{array}{ll} 3 x-4 y=6 & 3 x-4 y=-3 \\ x+4 y=18 & 4 x-3 y=10 \end{array}
Enter the values of xx and yy in the solution for each system in the following tabl \begin{tabular}{|c|c|} \hline \multirow[b]{2}{*}{System 1} & value of yy \\ \hline & \\ \hline System 2 & \\ \hline \end{tabular}

See Solution

Problem 3116

1. Find the general solution of the following differential equation by the method of undetermined coefficients: y+2y24y=16(x+2)e4xy^{\prime \prime}+2 y^{\prime}-24 y=16-(x+2) e^{4 x}

See Solution

Problem 3117

4. What is the standard form of the equation below? y=3(x2)25y=3(x-2)^{2}-5
Standard Form: f(x)=ax2+bx+cf(x)=a x^{2}+b x+c

See Solution

Problem 3118

Consider the following. y=13sec(x)y=\frac{1}{3} \sec (x)
Find the period. \square Give the equations for two consecutive vertical asymptotes for the graph of the function. (Enter your ans \square x=x=\square

See Solution

Problem 3119

Find the error in the calculations below, if there is one:  Line (1): 6x+8>22 Line (2): 6x>30 Line (3): x<5 Line (4): \begin{array}{l} \text { Line (1): }-6 x+8>-22 \\ \text { Line (2): }-6 x>-30 \\ \text { Line (3): } x<5 \\ \text { Line (4): } \end{array} There is no error. The error occurred from line (2) to line (3). The error occurred from line (3) to line (4). The error occurred from line (1) to line (2).

See Solution

Problem 3120

Solve for hh. 3(3h1)7h5-3(3 h-1) \leq-7 h-5 h4h \leq 4 h1h \geq 1 h4h \geq 4 h110h \leq-\frac{1}{10}

See Solution

Problem 3121

Solve for x:22x45=3x: 2|2 x-4|-5=-3 No solution. x=52x=\frac{5}{2} or x=32x=\frac{3}{2} x=154x=\frac{15}{4} or x=214x=\frac{21}{4} x=52x=\frac{5}{2} or x=4x=4

See Solution

Problem 3122

Factor the trinomial completely. 21y246y+2521 y^{2}-46 y+25
Select the correct choice below and, if necessary, fill in the answer box to complete your choice, A. 21y246y+25=21 y^{2}-46 y+25= \square (Factor completely.) B. The polynomial is prime.

See Solution

Problem 3123

Factor the trinomial, or state that the trinomial is prime. Check the factorization using FOIL multiplication. 10x229xy+10y210 x^{2}-29 x y+10 y^{2}
Select the correct choice below and fill in any answer boxes within your choice. A. 10x229xy+10y2=10 x^{2}-29 x y+10 y^{2}= \square B. The polynomial is prime.

See Solution

Problem 3124

Find the exact value of the expression, if possible. (If not possible, enter IMPOSSIBLE.) cos[arccos(2)]\cos [\arccos (-\sqrt{2})]

See Solution

Problem 3125

movement of the progress bar may be uneven because qu Evaluate the expression 2x2y1+3x02 x^{2}-y^{1}+3 x^{0} for x=4x=4 and y=7y=7. 28 60 97 15

See Solution

Problem 3126

9. f(x)=4x417x2+4f(x)=4 x^{4}-17 x^{2}+4 \begin{tabular}{|l|l|} \hline zero(s): & yy-intercept: \\ \hline \end{tabular}

See Solution

Problem 3127

10. For n1n \geq 1, establish that the integer n(7n2+5)n\left(7 n^{2}+5\right) is of the form 6k6 k.
11. If nn is an odd integer, show that n4+4n2+11n^{4}+4 n^{2}+11 is of the form 16k16 k.

See Solution

Problem 3128

Simplify the expression. (4ab3)2(3a5)\left(4 a b^{3}\right)^{2}\left(-3 a^{5}\right) 12a6b6-12 a^{6} b^{6} 12a7b6-12 a^{7} b^{6} 48a10b6-48 a^{10} b^{6} 48a7b6-48 a^{7} b^{6}

See Solution

Problem 3129

Factor the trinomial 4x2+8x54x^2 + 8x - 5.

See Solution

Problem 3130

For which of the following equations is the value of xx equal to 10 ? Select all that apply. A) x+10=20x+10=20 B) 10x=1010 x=10 C) 20÷x=220 \div x=2 D) 4x=104 x=10 E) 20x=1020-x=10

See Solution

Problem 3131

Is 50,50,2050,-50,20, or -20 the solution of the equation 15=c3515=c-35 ?

See Solution

Problem 3132

Write the logarithm as a sum or difference of logarithms. Simplify each term as much as possible. Assume that the variables represent positive real numbers. log2(14mn3)=\log _{2}\left(\frac{1}{4} m n^{3}\right)=\square

See Solution

Problem 3133

Multiply. (5y4)(7y+5)(5 y-4)(7 y+5)
Simplify your answer.

See Solution

Problem 3134

f(x)=2x25x3g(x)=2x2+5x+2\begin{array}{l} f(x)=2 x^{2}-5 x-3 \\ g(x)=2 x^{2}+5 x+2 \end{array}
Find: (fg)(x)\left(\frac{f}{g}\right)(x) x+3x+2\frac{x+3}{x+2} x3x+2\frac{x-3}{x+2} x21x32x^{2}-1 x-\frac{3}{2} 2x25x32x2+5x+2\frac{2 x^{2}-5 x-3}{2 x^{2}+5 x+2}

See Solution

Problem 3135

Read the following description of a relationship:
An electronics store has 19 permanent employees who work all year. The store also hires some temporary employees to work during the busy holiday shopping season.
Let a represent the number of temporary employees and bb represent the total number of employees during the holiday shopping season.
Complete the table using the function b=a+19b=a+19. \begin{tabular}{|c|c|} \hlineaa & bb \\ \hline 1 & \square \\ \hline 3 & \square \\ \hline 5 & 24 \\ \hline 7 & \square \\ \hline \end{tabular}
Save answer

See Solution

Problem 3136

Multiply. (43y)(4+3y)(4-3 y)(4+3 y)
Simplify your answer.

See Solution

Problem 3137

2. Solve the following equation for Real Number (s) xx 13x+525x3=0\frac{1}{3 x+5}-\frac{2}{5 x-3}=0

See Solution

Problem 3138

lue for the following expression log4(576)+log4(16)2log4(6)=\log _{4}(576)+\log _{4}(16)-2 \log _{4}(6)=

See Solution

Problem 3139

Evaluate x22x+3x^{2}-2 x+3 when x=3x=-3 3 0 6 18

See Solution

Problem 3140

Simplify: 11y2+12y6y28y+5y911 y^{2}+12 y-6 y^{2}-8 y+5 y^{9} 9y2+59 y^{2}+5 5y2+4y+55 y^{2}+4 y+5 5y2+4y+15 y^{2}+4 y+1 5y2+9y5 y^{2}+9 y

See Solution

Problem 3141

f(x)=x22x5f(x)=-x^{2}-2 x-5
The function has \square
Axis of Symmetry: \square
Vertex: \square
Domain: \square Range: \square

See Solution

Problem 3142

xx and choose the correct solution: x+51x+5 \geq-1 x4x \geq-4
x6x \geq-6 x4x \geq 4
x6x \geq-6

See Solution

Problem 3143

Prove the triangles below are congruent.
Given: BD,ACCE\angle B \cong \angle D, A C \cong C E Prove: ACBECD\triangle \mathrm{ACB} \cong \triangle \mathrm{ECD} 1) BD,ACCE\angle B \cong \angle D, A C \cong C E Given 2) ACBECD\angle A C B \cong \angle E C D [Choose] 3) ACBECD\triangle \mathrm{ACB} \cong \triangle E C D [Choose ]

See Solution

Problem 3144

(b) f(x)=x+3f(x)=-x+3 g(x)=x+3f(g(x))=g(f(x))=\begin{array}{l} g(x)=x+3 \\ f(g(x))=\square \\ g(f(x))=\square \end{array} ff and gg are inverses of each other ff and gg are not inverses of each other

See Solution

Problem 3145

Solve for aa. 6a+453-6 a+45 \leq 3 a7a \geq 7 a7a \geq-7 a8a \geq-8 a7a \leq 7

See Solution

Problem 3146

(a) f(x)=x+72f(x)=\frac{x+7}{2} g(x)=2x7f(g(x))=g(f(x))=\begin{array}{l} g(x)=2 x-7 \\ f(g(x))=\square \\ g(f(x))=\square \end{array} ff and gg are inverses of each other ff and gg are not inverses of each other

See Solution

Problem 3147

Find the amplitude, period, and phase shift of the given function. y=0.4cos0.2(x+π10)y=0.4 \cos 0.2\left(x+\frac{\pi}{10}\right)
The amplitude is \square (Type an exact answer, using π\pi as needed. Use integers or decimal

See Solution

Problem 3148

Multiply. State the product in simplest form. 49k53k38,k0\frac{4}{9 k^{5}} \cdot \frac{3 k^{3}}{8}, k \neq 0 125x8\frac{1}{25 x^{8}} 16k2\frac{1}{6 k^{2}} 160k2\frac{1}{60 k^{2}} 16k8\frac{1}{6 \mathrm{k}^{8}}

See Solution

Problem 3149

The movement of the progress bar may be Subtract. State the difference in simplest form. 74m43n\frac{7}{4 m}-\frac{4}{3 n} 14mn\frac{1}{4 m n} 21n16m12mn\frac{21 n-16 m}{12 m n} 34m3n\frac{3}{4 m-3 n} 7m3n3mn\frac{7 m-3 n}{3 m n}

See Solution

Problem 3150

1. What is the equation, center, and radius of the circle? x2+2x+y2+6y7=0x2+2x+y2+6y=7x2+2x+17y2+6y=7+1(x+1)2+y2+6y=8(x+1)2+y2+6y+9<8+9(x+1)2+(y+3)2=17\begin{array}{l} x^{2}+2 x+y^{2}+6 y-7=0 \\ x^{2}+2 x+y^{2}+6 y=7 \\ x^{2}+2 x+17 y^{2}+6 y=7+1 \\ (x+1)^{2}+y^{2}+6 y=8 \\ (x+1)^{2}+y^{2}+6 y+9<8+9 \\ (x+1)^{2}+(y+3)^{2}=17 \end{array}

See Solution

Problem 3151

Fer was - 42, Solle the equnsien by -Cempleting the Square". (39) x2+8x+3=0x^{2}+8 x+3=0 x2+8x+16=5+16(x+4)2=11\begin{array}{r} x^{2}+8 x+16=-5+16 \\ (x+4)^{2}=11 \end{array}
Solutions: \qquad 41) 7x218x=14+10x7 x^{2}-18 x=14+10 x 812=98-\frac{1}{2}=9 (4)2=16(4)^{2}=16 90) 4x2456x4204=04\frac{4 x^{2}}{4}-\frac{56 x}{4}-\frac{20}{4}=\frac{0}{4} x214x5=01412=7x214x=5(7)2=49x7=154x214x+49=5x49(x7)2=54\begin{array}{cc} x^{2}-14 x-5=0 & -14-\frac{1}{2}=7 \\ x^{2}-14 x=5 & (-7)^{2}=49 \\ x-7=1 \sqrt{54} & x^{2}-14 x+49=5 x 49 \\ (x-7)^{2}=54 \end{array}
Solutions: \qquad 42) x212x=44\mathrm{x}^{2}-12 \mathrm{x}=-44
Solutions: \qquad Solutions: \qquad

See Solution

Problem 3152

The function gg is defined as follows for the domain given. g(x)=22x, domain ={3,2,1,5}g(x)=2-2 x, \quad \text { domain }=\{-3,-2,1,5\}
Write the range of gg using set notation. Then graph gg.  range ={8,6,0,8}\text { range }=\{8,6,0,-8\}

See Solution

Problem 3153

The function hh is defined as follows for the domain given. h(x)=12x, domain ={1,0,1,2}h(x)=1-2 x, \quad \text { domain }=\{-1,0,1,2\}
Write the range of hh using set notation. Then graph hh. range =

See Solution

Problem 3154

(1 pt) Find the inflection points of thefunction f(x)=ex(34x2)f(x)=e^{-x}\left(34-x^{2}\right). INTERMEDIATE WORK f(x)=ex(x22x34)f(x)=ex(x2+32)\begin{array}{l} f^{\prime}(x)=e^{\wedge}-x\left(x^{\wedge} 2-2 x-34\right) \\ f^{\prime \prime}(x)=e^{\wedge}-x\left(-x^{\wedge} 2+32\right) \end{array}
On what intervals is ff concave upward? On what intervals is ff concave downward? \square (Give your answer in interval notation, for example: [a,b) U (c,d]. If needed enter -\infty as - infinity and \infty as infinity. ) FINAL ANSWER Inflection points of f(x)f(x) are \square (Give your answer as a comma separated list, for example: a,b,\mathbf{a}, \mathbf{b}, \ldots )

See Solution

Problem 3155

Write the following function in the form y=asin[b(xc)]\mathrm{y}=\mathrm{a} \sin [\mathrm{b}(\mathrm{x}-\mathrm{c})]. Find the period and phase shift. y=4sin(2πx+10)y=4 \boldsymbol{\operatorname { s i n }}(2 \pi x+10)
Write the given function in the form y=asin[b(xc)]y=a \sin [b(x-c)]. y=sin[(x())]\mathrm{y}=\square \sin [\square(\mathrm{x}-(\square))]

See Solution

Problem 3156

Convert the following expressions between exponential and logarithmic form. a. 2401=742401=7^{4} [1 mark] b. a=logbc\quad a=\log _{\mathrm{b}} c [1 mark]

See Solution

Problem 3157

Solve for xx. 4x=21x=2.192\begin{array}{l} 4^{x}=21 \\ x=2.192 \end{array} (Type an intejer or a decimal. Round to four decimal places as needed. Use a comma to separate answers as needed.

See Solution

Problem 3158

=sin(cos6x)+sin6xcosx=sin(x+6x)=sin7x\begin{array}{l}=\sin (\cos 6 x)+\sin 6 x \cos x \\ =\sin (x+6 x)=\sin 7 x\end{array}

See Solution

Problem 3159

1131313=\frac{1}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=

See Solution

Problem 3160

1333=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=

See Solution

Problem 3161

1555\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}

See Solution

Problem 3162

Express the function (or rule) in words. f(x)=2x+9f(x)=2 x+9 Multiply by 9 , then add 2. Add 9, then square the result. Add 9, then multiply the result by 2 . Square, then add 9. Multiply by 2, then add 9.

See Solution

Problem 3163

Use the function to evaluate the indicated expressions and simplify. f(x)=27x6f(x3)=f(x)3=\begin{array}{l} f(x)=27 x-6 \\ f\left(\frac{x}{3}\right)=\square \\ \frac{f(x)}{3}=\square \end{array}

See Solution

Problem 3164

The number of new members joining Facebook each year in the period from 2005 to the middle of 2008 can be modeled by m(t)=12t220t+10 million members per year (0t3.5)m(t)=12 t^{2}-20 t+10 \text { million members per year }(0 \leq t \leq 3.5) where tt is time in years since the start of 2005.t What was the average number of new members joining Facebook each year from the start of 2005 to the start of 2007?2007 ? \square million members per year

See Solution

Problem 3165

43. [0.24/0.31 Points] DETAILS MYNOTES SCOLALG7 2.2.083. 3/100 Submissions Used PREVIOUS ANSWERS ASKYOUR TEACHER your answer in dollars.) { if 0<x1 if 1<x2 if 2<x3 if 3<x3.5\left\{\begin{array}{ll} \square & \text { if } 0<x \leq 1 \\ \square & \text { if } 1<x \leq 2 \\ \square & \text { if } 2<x \leq 3 \\ \square & \text { if } 3<x \leq 3.5 \end{array}\right.

See Solution

Problem 3166

8. Evaluate. Show work a) 1415÷2120-\frac{14}{15} \div \frac{21}{20} *b) (125)÷(258)\left(-1 \frac{2}{5}\right) \div\left(-2 \frac{5}{8}\right) a. \qquad b. \qquad *9. Evaluate. Show work. 3845×310÷25-\frac{3}{8}-\frac{4}{5} \times \frac{3}{10} \div \frac{2}{5} 4b+7c\frac{4}{b}+\frac{7}{c} =4b×+7c×=4cbc+7bbc=+bc\begin{array}{l} =\frac{4}{b} \times \frac{\square}{\square}+\frac{7}{c} \times \frac{\square}{\square} \\ =\frac{4 c}{b c}+\frac{7 b}{b c} \\ =\frac{\square+\square}{b c} \end{array}
9. \qquad

See Solution

Problem 3167

16. Use the quadratic formula to find the roots (answers). 3x25x+3=03 x^{2}-5 x+3=0

See Solution

Problem 3168

4. State the Quadratic formula and use it to solve the equation: 3x2+8x+6=03 x^{2}+8 x+6=0

See Solution

Problem 3169

Animal populations are not capable of unrestricted growth because of limited habitat and food supplies. Under such conditions the population follows a logistic growth model: P(t)=d1+kectP(t)=\frac{d}{1+k e^{-c t}} where c,dc, d, and kk are positive constants. For a certain fish population in a small pond d=1400,k=13,c=0.2d=1400, k=13, c=0.2, and tt is measured in years. The fish were introduced into the pond at time t=t= (a) How many fish were originally put in the pond?
100 \qquad fish (b) Find the population after 10, 20, and 30 years. (Round your answers to the nearest whole number.)
10 years \square fish 20 years \square fish 30 years 1356 \square fish

See Solution

Problem 3170

50\sqrt{-50}

See Solution

Problem 3171

Use Synthetic Division to determine each quotient (and remainder - if necessary). If possible, use the quotients to write the dividend in factored form and list all the zeros. If NOT possible with given divisor, write DNE for all applicable answers. Complete work must be shown for credit! (x45x2+4)÷(x+2)\left(x^{4}-5 x^{2}+4\right) \div(x+2)
Quotient: \square Factored Form: \square Zeros: Select an answer \vee \square

See Solution

Problem 3172

5. Classify each polynomial as a monomial, binomial, or trinomial. State the degree of the polynomial. 5m25 m^{2} Name: Select an answer  ~ \sim
Degree: \square Add Work
Next Question

See Solution

Problem 3173

Use the rational zeros theorem to list all possible zeros of the function f(x)=5x3+x2+x+7f(x)=5 x^{3}+x^{2}+x+7. Enter the possible zeros separated by commas. You do not need to factor the polynomial. Add Work Next Question

See Solution

Problem 3174

Evaluate w+(x)23w+(-x)-\frac{2}{3} where w=59w=-\frac{5}{9} and x=43x=\frac{4}{3}

See Solution

Problem 3175

n=1n3n5=1n2\sum_{n=1}^{\infty} \frac{n^{3}}{n^{5}}=\frac{1}{n^{2}}
Converge n=1n32n2+n1n52\sum_{n=1}^{\infty} \frac{n^{3}-2 n^{2}+n-1}{n^{5}-2}

See Solution

Problem 3176

Calculate the integral of ze2x+yz e^{2 x+y} over the surface of the box with 0x4,0y9,0z80 \leq x \leq 4,0 \leq y \leq 9,0 \leq z \leq 8. (Express numbers in exact form. Use symbolic notation and fractions where needed.) Sze2x+ydS=52e1720e920e844\iint_{S} z e^{2 x+y} d S=52 e^{17}-20 e^{9}-20 e^{8}-44
Incorrect Answer

See Solution

Problem 3177

Evaluate f(x)=3x+15f(x)=-3 x+15 when x=4,x=0x=-4, x=0, and x=5x=5.
When x=4,f(x)=x=-4, f(x)= \square when x=0,f(x)=x=0, f(x)= \square , and when x=5,f(x)=x=5, f(x)= \square .

See Solution

Problem 3178

Differentiate the following function. f(x)=xex1+xexf(x)=\begin{array}{l} f(x)=\frac{x-e^{-x}}{1+x e^{-x}} \\ f^{\prime}(x)=\square \end{array}

See Solution

Problem 3180

LockDown Browser for Chrom chrome//seltings/adPrivacy Clever/Portal Big ldeas Math:Assessment bigideasmath.com/BIM/stu A. Amplify Curriculum Alexia Lopez Castro. Clever / Log in Alexia Lopez Castro
Determine whether each relation is a function.
Function Not A Function :(1,2),(1,1),(2,0),(3,1)::(8,2),(7,2),(6,3),(5,4):(1,2),(1,1),(2,0),(3,-1) \quad::(8,2),(7,2),(6,3),(5,4) Nov 15

See Solution

Problem 3181

Solve the following system of equations. x2+y2=16x+4y=2\begin{array}{l} x^{2}+y^{2}=16 \\ x+4 y=2 \end{array}
What are ALL the solutions? Round to 3 decimal places. ( smaller x coordinate, y1)=( Number ), Number )( larger x coordinate, y2)=( Number )\begin{array}{l} (\text { smaller } x \text { coordinate, } \mathrm{y} 1)=(\text { Number }), \text { Number }) \\ (\text { larger } \mathrm{x} \text { coordinate, } \mathrm{y} 2)=(\text { Number }) \end{array}

See Solution

Problem 3182

Inbox-olivia.scales@mscs.us Quiz 4.5 - 4.6 labschool.pearson.com/Student/PlayerTest.aspx?testId=10297943 School Grades and Attenda... Schoology 2024-2025 - 4.6 Que
Determine the amplitude and period of each function. Then gra y=3sin12xy=3 \sin \frac{1}{2} x (Type an exact answer in terms of π\pi. Use integers or fractions Determine the graph of y=3sin12xy=3 \sin \frac{1}{2} x. A. B.

See Solution

Problem 3183

cos3(4x)sin(4x)dx\int \cos ^{3}(4 x) \sin (4 x) d x

See Solution

Problem 3184

[-/1 Points] DETAILS MY NOTES POOLELINALG4 2.1.019.
Solve the given system by back substitution. (If your answer is dependent, use the parameters ss and tt as necessary.) x2y=1y=3[x,y]=[]\begin{array}{r} x-2 y=1 \\ y=3 \\ {[x, y]=[\square]} \end{array} Need Help? Read It

See Solution

Problem 3185

luate the integral using the properti 99x(8x2+7)3dx\int_{-9}^{9} x\left(8 x^{2}+7\right)^{3} d x

See Solution

Problem 3186

For the polynomial below, -1 is a zero. h(x)=x33x23x+1h(x)=x^{3}-3 x^{2}-3 x+1
Express h(x)h(x) as a product of linear factors.

See Solution

Problem 3187

33. cos6xsin6x=cos2x(114sin22x)\cos ^{6} x-\sin ^{6} x=\cos 2 x\left(1-\frac{1}{4} \sin ^{2} 2 x\right)

See Solution

Problem 3188

Use the Fundamental Theorem to evaluate the definite integral exactly. 03t3dt=\int_{0}^{3} t^{3} d t= \square

See Solution

Problem 3189

f(x)=x24+x2+9 f(x) = \sqrt{x^{2}-4} + \sqrt{x^{2}+9}

See Solution

Problem 3190

Differentiate the following function. y=3ln(4x)xy=\frac{3 \ln (4 x)}{\sqrt{x}}
ddx(3ln(4x)x)=\frac{d}{d x}\left(\frac{3 \ln (4 x)}{\sqrt{x}}\right)= \square

See Solution

Problem 3191

Differentiate the function y=ln(2x27x+1)y=\ln \left(2 x^{2}-7 x+1\right) y=1ddx[2x27x+1]y^{\prime}=\frac{1}{\frac{d}{d x}\left[2 x^{2}-7 x+1\right]} D. y=12x27x+1ddx[2x27x+1]y^{\prime}=\frac{1}{2 x^{2}-7 x+1} \cdot \frac{d}{d x}\left[2 x^{2}-7 x+1\right] y=y^{\prime}= \square

See Solution

Problem 3192

Differentiate the function y=(x2+9)ln(x2+9)y=\left(x^{2}+9\right) \ln \left(x^{2}+9\right) y=y^{\prime}=

See Solution

Problem 3193

3. h(x)=72xh(x)=7-2 x 72(9)=17-2(-9)=1

See Solution

Problem 3194

Convert to Standard Form y=23x9y=\frac{2}{3} x-9 \square \square \square \square

See Solution

Problem 3195

Change to Standard Form: y=23x4y=-\frac{2}{3} x-4 \square xx \square ++ \square y=y= \square

See Solution

Problem 3196

1. A T-shirt at a department store costs $7.50\$ 7.50. The total cost, in dollars, of aa T-shirts is given by the function C(a)=7.5aC(a)=7.5 a. a. Complete the table of values for 4 T -shirts. \begin{tabular}{|l|c|c|c|c|} \hline T-shirts & 1 & 2 & 3 & 4 \\ \hline Cost ($)(\$) & & & & \\ \hline \end{tabular} b. Determine the common difference. c. What does the variable aa represent? What are the reasonable domain values for aa ?

See Solution

Problem 3197

If tt is in years, and t=0t=0 is January 1,2020 , worldwide energy consumption, rr, in exajoules ( 101810^{18} joules) per year, 1{ }^{1} is modeled by r=583.9e0.013tr=583.9 e^{0.013 t} (a) Write a definite integral for the total energy use between the start of 2020 and the start of 2031.
Total energy used == \square \square dtd t exajoules

See Solution

Problem 3198

Differentiate the following function. y=x4lnx4y=\frac{x^{4} \ln x}{4} D. ddx[x4lnx4]=ddx[x44]lnx+ddx[x44]lnx\frac{d}{d x}\left[\frac{x^{4} \ln x}{4}\right]=\frac{d}{d x}\left[\frac{x^{4}}{4}\right] \cdot \ln x+\frac{d}{d x}\left[\frac{x^{4}}{4}\right] \cdot \ln x ddx(x4lnx4)=\frac{d}{d x}\left(\frac{x^{4} \ln x}{4}\right)= \square

See Solution

Problem 3199

Differentiate the following function. y=4ln(3x)xy=\frac{4 \ln (3 x)}{\sqrt{x}} D. ddx[4ln(3x)x]=vdx[l I /](x)2\frac{d}{d x}\left[\frac{4 \ln (3 x)}{\sqrt{x}}\right]=\frac{v^{\wedge} d x^{[\cdots l \text { I } /]}}{(\sqrt{x})^{2}} ddx(4ln(3x)x)=\frac{d}{d x}\left(\frac{4 \ln (3 x)}{\sqrt{x}}\right)=

See Solution

Problem 3200

Differentiate the following function. y=4ln(3x)xy=\frac{4 \ln (3 x)}{\sqrt{x}} ddx(4ln(3x)x)=\frac{d}{d x}\left(\frac{4 \ln (3 x)}{\sqrt{x}}\right)=

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord