Geometry

Problem 701

Find the slope of the line passing through the following pair of points. (3,2) and (5,4)(3,-2) \text { and }(-5,-4)

See Solution

Problem 702

CONNECTING CONCEPTS Use the given information to write and solve a system of linear ec the values of xx and yy. LMNPQR,mL=40,mM=90,mP=(17xy),mR=(2x+4y)\triangle L M N \cong \triangle P Q R, m \angle L=40^{\circ}, m \angle M=90^{\circ}, m \angle P=(17 x-y)^{\circ}, m \angle R=(2 x+4 y)^{\circ}
The equations are 17xy=4017 x-y=40 and 2x+4y=1802 x+4 y=180. x= and y=x=\square \text { and } y=\square

See Solution

Problem 703

Convert the following polar coordinates to rectangular coordinates equations. (Here aa is a constant number.) r=ar=a \square r=asec(θ)r=a \sec (\theta) \square r=acsc(θ)r=a \csc (\theta) \square r=2asin(θ)r=2 a \sin (\theta) \square r=2acos(θ)r=2 a \cos (\theta) \square r=asec(2θ)r=a \sec (2 \theta) \square θ=π4\theta=\frac{\pi}{4} \square
Drag or tap the options below to fill in the blanks x2y2=ay=ay=xx2+(ya)2=a2x=a)2+y2=a2x2+y2=a2\left.x^{2}-y^{2}=a y=a y=x x^{2}+(y-a)^{2}=a^{2} x=a\right)^{2}+y^{2}=a^{2} x^{2}+y^{2}=a^{2}

See Solution

Problem 704

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.
1. (x3)2=12(y7)(x-3)^{2}=12(y-7)
2. (x+1)2=12(y6(x+1)^{2}=-12(y-6
3. (y4)2=20(x+2)(y-4)^{2}=20(x+2)
4. 1(x+7)=(y+5)2-1(x+7)=(y+5)^{2}
5. (x+8)2=8(y3)(x+8)^{2}=8(y-3)
6. 40(x+4)=(y9)-40(x+4)=(y-9)
7. (y+5)2=24(x1)(y+5)^{2}=24(x-1)
8. 2(y+12)=(x6)22(y+12)=(x-6)^{2}
9. 4(y+2)=(x+8)2-4(y+2)=(x+8)^{2}
10. 10(x+11)=(y+3)210(x+11)=(y+3)^{2}

See Solution

Problem 705

A large room has tiles laid out in a regular pattern as below. \begin{tabular}{|l|l|l|l|l|l|l|l|} \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & 2m2 m & & & & & & \\ \hline & & 2m2 m & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline \end{tabular}
If each of these tiles is 2 m×2 m2 \mathrm{~m} \times 2 \mathrm{~m}, how far is it (in a straight line) between the two marked points?
Distance == \square m.

See Solution

Problem 706

For a triangle, list the respective names of the points of concurrency of - perpendicular bisectors of the sides - bisectors of the angles - medians - lines containing the altitudes
Select one: a. incenter circumcenter centroid orthocenter b. circumcenter incenter centroid orthocenter c. circumcenter incenter orthocenter centroid d. incenter circumcenter orthocenter centroid

See Solution

Problem 707

Find the surface area of the cone below. Leave your answer in terms of π\pi. SASA=[?]πcm2\frac{S A}{S A=[?] \pi \mathrm{cm}^{2}}

See Solution

Problem 708

Find the volume of this cylinder. Round to the nearest tenth. Submit

See Solution

Problem 709

Write the coordinates of the vertices after a dilation with a scale factor of 3 , centered at the origin. P(,)Q(,)R(,)S(,)\begin{array}{l} P^{\prime}(\square, \square) \\ Q^{\prime}(\square, \square) \\ R^{\prime}(\square, \square) \\ S^{\prime}(\square, \square) \end{array}

See Solution

Problem 710

Write the coordinates of the vertices after a dilation with a scale factor of 2 , centered at the origin. Q(,)Q^{\prime}(\square, \square) R(,)R^{\prime}(\square, \square) S(,)S^{\prime}(\square, \square) T(,)T^{\prime}(\square, \square)

See Solution

Problem 711

In the figure below, hjh \| j. Find the values of xx and zz. x=x= \square z=z= \square

See Solution

Problem 712

(a) Select all that describe AD\overline{A D}. Perpendicular bisector of BC\overline{B C} Angle bisector of A\angle A Median of ABC\triangle A B C Altitude of ABC\triangle A B C None of the above (b) Select all that describe IO\overline{I O}. Perpendicular bisector of FG\overline{F G} Angle bisector of H\angle H Median of FGH\triangle F G H Altitude of FGH\triangle F G H None of the above (c) Select all that describe JM\overline{J M}. Perpendicular bisector of KL\overline{K L} Angle bisector of J\angle J Median of JKL\triangle J K L Altitude of JKL\triangle J K L None of the above

See Solution

Problem 713

18. The curve in the figure is the graph of y=x2bxcy=x^{2}-b x-c. Find the area of the shaded region. A. bc. B. b2b^{2}. C. b24cb^{2}-4 c D. b2+4cb^{2}+4 c

See Solution

Problem 714

19. If a,b\mathrm{a}, \mathrm{b} and c are all negative, which of the following may represent the graph of ax+by+c=0?a x+b y+c=0 ? A. B. C. D.

See Solution

Problem 715

20. In the figure, find the coordinates of the mid-point of ABA B. A. (72,352)\left(-\frac{7}{2},-\frac{35}{2}\right) B. (52,254)\left(-\frac{5}{2},-\frac{25}{4}\right) C. (52,372)\left(-\frac{5}{2},-\frac{37}{2}\right) D. (72,352)\left(\frac{7}{2}, \frac{35}{2}\right)
By Ameina 20 Maple Tutorial Centre

See Solution

Problem 716

3. Calculate the volume of a cylinder where: a) the area of the base is 30 cm230 \mathrm{~cm}^{2} and the height is 6 cm . b) the radius of the base is 14 cm and the height is 10 cm .

See Solution

Problem 717

1. You have a right rectangular prism and you're required to find the perimeter, area of the base, and the volume. The measurement of the given prism is as follows:  Length =60 cm Width =10 cm Height =5 cm\begin{array}{l} \text { Length }=60 \mathrm{~cm} \\ \text { Width }=10 \mathrm{~cm} \\ \text { Height }=5 \mathrm{~cm} \end{array}

See Solution

Problem 718

In the figure, the solid consists of two hemispheres. The radii of the two hemispheres are 5 cm and 12 cm . (a) Find the total surface area of the solid. (b) If the cost of painting the solid is $8/m2\$ 8 / \mathrm{m}^{2}, find the total cost of painting 100 identical solids. Give the answers correct to 3 significant figures.)

See Solution

Problem 719

(6) Im Quader liegt das Dreieck ABH. a) Berechne den Umfang des Dreiecks. b) Berechne die Größe des Winkels α\alpha.

See Solution

Problem 720

3. Calculate the volume of a cylinder where: a) the area of the base is 30 cm230 \mathrm{~cm}^{2} and the height is 6 cm . b) the radius of the base is 14 cm and the height is 10 cm .

See Solution

Problem 721

16 Beskriv det färgade området med en olikhet.

See Solution

Problem 722

22. Gegeben sind die Punkte A(303)A(3|0|-3), B(353)B(3|5|-3) und D(100)D(-1|0| 0). a) Berechnen Sie die Koordinaten des Punktes CC, sodass ABCDA B C D ein Parallelogramm ist. b) Zeigen Sie, dass das Parallelogramm sogar ein Quadrat ist, indem Sie die Längen der Seiten miteinander vergleichen und auch die Längen der Diagonalen. c) Berechnen Sie die Koordinaten des Mittelpunktes M des Quadrats ABCD. Zeigen Sie, dass M auf der Geraden h
B liegt, welche durch S(72,56,5)S(-7|2,5| 6,5) verläuft und den Richtungsvektor v=(101)\vec{v}=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right) hat. d) Zeigen Sie, dass der Punkt S von den vier Eckpunkten des Quadrats gleich weit entfernt ist. Geben Sie an, welche Bedeutung dann die Strecke MS\overline{M S} für die Pyramide mit Grundfläche ABCDA B C D und Spitze SS hat. e) Berechnen Sie das Volumen der Pyramide.

See Solution

Problem 723

Find the value of aa in rectangle PQRSP Q R S. a=a= Submit Work it out

See Solution

Problem 724

Which expression gives the distance between the points (4,2)(4,-2) and (4,5)(4,-5) ? Use the coordinate grid to help you find the answer.

See Solution

Problem 725

UTLNE coorde the ordered pair, (3.5,4.5)(-3.5,4.5), on the Item 7
Item 8
Item 9
Item 10
Item 11
Item 12
Item 13

See Solution

Problem 726

The triangles below are similar. Solve for the indicated side length.\text{The triangles below are similar. Solve for the indicated side length.}
Solve for side QR.QR=[?]\text{Solve for side } \mathrm{QR}. \quad \mathrm{QR}=[?]
Given:\text{Given:}
RS=75,RQ=2x7\text{RS} = 75, \quad \text{RQ} = 2x - 7
In the corresponding triangle:\text{In the corresponding triangle:}
AC=50,AB=42\text{AC} = 50, \quad \text{AB} = 42
Solve for RQ.\text{Solve for } \mathrm{RQ}.

See Solution

Problem 727

What is the volume of the cone below? A. 56π56 \pi units 3^{3} B. 336π336 \pi units 3^{3} C. 112π112 \pi units 3^{3} D. 168π168 \pi units 3^{3}

See Solution

Problem 728

What is the formula for the volume of a right cone with base area BB and height hh ? A. V=13BhV=\frac{1}{3} B h B. v=Bhv=B h C. V=2Bh2V=2 B h^{2} D. v=13Bhv=-\frac{1}{3} B h

See Solution

Problem 729

Find the volume of the cone shown below. A. 392π392 \pi units 3^{3} B. 1176π1176 \pi units 3^{3} C. 1176 units 3^{3} D. 392 units 3^{3}

See Solution

Problem 730

The equation of the following conic section is (A) 9x2y2=369 x^{2}-y^{2}=36 (B) x29y2=36x^{2}-9 y^{2}=36 (C) x2+3y2=6x^{2}+3 y^{2}=6 (D) 9x2+y2=369 x^{2}+y^{2}=36 (E) x2+9y2=36x^{2}+9 y^{2}=36

See Solution

Problem 732

CDDE.\overline{C D} \cong \overline{D E} .
Which term describes FD\overline{F D} ? perpendicular bisector median altitude angle bisector

See Solution

Problem 733

TUWVUW.\angle T U W \cong \angle V U W .
Which term describes UW\overline{U W} ? perpendicular bisector altitude angle bisector median

See Solution

Problem 734

PQS\angle P Q S is a right angle and QRPQ\overline{Q R} \cong \overline{P Q}.
Which term describes QS? perpendicular bisector altitude angle bisector none of these Submit

See Solution

Problem 735

X\begin{array}{l} \angle X \end{array}  X 82+b2=10xa=36=b=810=4568=34\begin{array}{l} \text { X } \\ 8^{2}+b^{2}=10-x^{a}=3^{6}=-b= \\ \frac{8}{10}=\frac{4}{5} \\ \frac{6}{8}=\frac{3}{4} \end{array}

See Solution

Problem 736

UWX\angle U W X is a right angle.
Which term describes UW\overline{U W} ? median altitude perpendicular bisector none of these

See Solution

Problem 737

The equation of the following conic section is (A) 9x2y2=369 x^{2}-y^{2}=36 (B) x29y2=36x^{2}-9 y^{2}=36 (C) x2+3y2=6x^{2}+3 y^{2}=6 (D) 9x2+y2=369 x^{2}+y^{2}=36 (E) x2+9y2=36x^{2}+9 y^{2}=36

See Solution

Problem 738

UVVW.\overline{U V} \cong \overline{V W} .
Which term describes πv\overline{\pi v} ? altitude median perpendicular bisector none of these Submit Work Not feeling ready y

See Solution

Problem 739

Look at the diagram.
Which term describes TV\overline{T V} ? altitude perpendicular bisector median none of these

See Solution

Problem 740

1. We want to find the slope of the line passing through the points A(1,4)A(1,4) and B(8,25)B(8,25).
You can use this xyx y-plane and the sketchpad to plot the points and the line.
10. First, find the rise (change in the yy-value) between points AA and BB.

See Solution

Problem 741

Using the figure determine whether the statement is true or false.

See Solution

Problem 742

2. Carmen wrote a proof to show the triangles are congruent. What was her error? C\angle C and F\angle F are rt. s\angle \mathrm{s}. Given AB=DE,AC=DFA B=D E, A C=D F Given - ABDE,ACDF\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F} Congruent segments have equal measures. ABCDEF\triangle A B C \cong \triangle D E F SSA

See Solution

Problem 743

```latex \text{Given:} \\ \text{An object is on a 45-degree incline. The weight of the object is 500 N. There is no friction. A force of 750 N is acting in the positive x-axis direction.} \\
\text{Find the resultant force parallel to the incline.} \\
\text{Details:} \\ \text{1. Incline angle: } \theta = 45^\circ \\ \text{2. Weight of the object: } W = 500 \, \text{N} \\ \text{3. Force acting in the positive x-axis: } F = 750 \, \text{N} \\ \text{4. No friction.} \\
\text{Calculate the component of the weight parallel to the incline:} \\ W_{\parallel} = W \cdot \sin(\theta) \\
\text{Calculate the component of the 750 N force parallel to the incline:} \\ F_{\parallel} = F \cdot \cos(\theta) \\
\text{Resultant force parallel to the incline:} \\ R_{\parallel} = F_{\parallel} - W_{\parallel} ```

See Solution

Problem 744

PROBLEM 2: GRAPHING A LINE USING INTERCEPTS Graph each equation using the xx - and yy-intercepts.
9. x2y=2x-2 y=-2
10. 2x+5y=202 x+5 y=20
11. 2x3y=122 x-3 y=12
12. x+3y=6-x+3 y=6
13. 6x2y=186 x-2 y=18
14. 4x+3y=18-4 x+3 y=18

PROBLEM 3: GRAPHING HORIZONTAL AND VERTICAL LINES If A=0A=0 in the standard form Ax+By=CA x+B y=C, then you can write the equation in the form y=by=b, where bb is a constant. If B=0B=0, you can write the equation in the form x=ax=a, where aa is a constant. The graph of y=by=b is a horizontal line, and the graph of x=ax=a is a vertical line.

See Solution

Problem 745

7. Aşagida kenar uzunlukian metre cinsinden birer dogal sayr va bir kenan artak olanilki dikdórigen illo bu dikdortgenlerin alanlan verilmigtir.
Buna göre dikdörtgenlerin ortak kenarınin uzunlugu assagıdaklordan hangisl glamaz? A) 8 m B) 9 m C) 12 m D) 18 m

See Solution

Problem 746

(a) The standard normal curve is graphed below. Shade the region under the standard normal curve to the left of z=2.00z=-2.00.

See Solution

Problem 747

1. What is the slope of the line in the graph below,

See Solution

Problem 748

5. Given m6=142m \angle 6=142^{\circ}, find the measure of each missing ang a. m1=m \angle 1= b. m2=m \angle 2= c. m3=m \angle 3= d. m4=m \angle 4= e. m<5=m<5=
5. 8007=8007=

See Solution

Problem 749

h/public/activity/3006003/assessment 〔 3.6.3 Qulz: Spheres
Question 1 of 10 The area of a circle of radius 10 units is equal to the surface area of a sphere of radius 5 units. A. True B. False SUBMIT - PREVIOUS

See Solution

Problem 750

1. Agagida veriton 12 cm ve 18 cm uzunlugundak Iayanslar kirimadan birer kenarian ortak olacak pektlda bir duvar Uzerino tasmadan yorlegtinlobilmoktedir.
Duvann uzunluğu 320 cm 'den fazla olduğuna göre enaz laç astimetredir? A) 324 B) 360 C) 396 D) 432

See Solution

Problem 751

You measure two sides of a triangle and find that they are 8 inches and 5 inches. What is one possible length of a third side? Explain thoroughly.

See Solution

Problem 752

The center of the inscribed circle of a triangle is the point where all three \qquad meet.

See Solution

Problem 753

Does this graph have maximum or minimum value? both maximum neither minimum

See Solution

Problem 754

9/199 / 19
Does this graph have a maximum or minimum value? maximum neither minimum both

See Solution

Problem 755

The graph of a function is given below. Give all xx-intercepts and yy-intercepts shown.
If there is more than one answer, separate them with comm Click on "None" if applicable. ercept(s): \square Try again ercept(s): \square None

See Solution

Problem 756

Graphs and Functions Finding xx - and yy-intercepts given the graph of a line on a grid
Find the xx-intercept and the yy-intercept of the line below. (a) xx-intercept: \square None Explanation Check

See Solution

Problem 757

16/19
What are the coordinates of the yy-intercept? (2,1)(2,1) (3,0)(-3,0) (0,5)(0,-5) y=3y=-3

See Solution

Problem 758

What is the length of the line segment with endpoints (11,4)(11,-4) and (12,4)?(-12,-4) ?
Enter your answer in the box. \square units

See Solution

Problem 759

The two cones below are similar. What is the height of the larger cone? A. 5 B. 354\frac{35}{4} C. 285\frac{28}{5} D. 207\frac{20}{7}

See Solution

Problem 760

If two pyramids are similar and the ratio between the lengths of their edges is 4:94: 9, what is the ratio of their volumes? A. 64:72964: 729 B. 81:1681: 16 C. 4:94: 9 D. 16:8116: 81

See Solution

Problem 761

The two solids are similar, and the ratio between the lengths of their edges is 2:72: 7. What is the ratio of their surface areas? A. 2:72: 7 B. 4:144: 14 C. 8:3438: 343 D. 4:494: 49

See Solution

Problem 762

What will be the measure of angle 6 if angle 1 is equal to 60 ?

See Solution

Problem 763

Match each definition below with the part of a circle that it describes. a) The distance around the edge of a circle
Diameter b)
A straight line between two points on the edge of a circle that goes through the centre
Circumference of the circle C) A straight line from the centre of a circle to a point on the edge of the circle
Radius Zoom

See Solution

Problem 764

Consider the following pair of points. (0,9) and (1,1)(0,-9) \text { and }(1,-1)
Step 1 of 2: Determine the distance between the two points.
Answer

See Solution

Problem 765

2 units? A. (5,3),(0,4)(-5,-3),(0,-4), and (1,1)(-1,-1) B. (5,3),(4,4)(-5,-3),(-4,4), and (1,3)(-1,3) C. (3,1),(4,4)(-3,-1),(4,-4), and (3,1)(3,1) D. (3,5),(4,4)(-3,-5),(-4,4), and (1,3)(-1,3) E. (3,5),(4,0)(-3,-5),(-4,0), and (1,1)(-1,-1)

See Solution

Problem 766

Do Now Practice
Calculate the slope of the line containing the points: i) (1,1)(1,1) and (2,2)(2,2) ii) (1, 2) and (2, 1) iii) (5,1)(5,1) and (2,1)(2,1)

See Solution

Problem 767

From the diagram below, choose the correct letter for each the following parts of a circle: a) a chord b) an arc c) a tangent

See Solution

Problem 768

The circle below is centred at O . a) Which letter labels a segment of the circle? b) Which letter labels a sector of the circle?

See Solution

Problem 769

A certain rectangular prism has a length that is 8 inches more than the width and a height that is 1 inch less than the width. The volume of a rectangular prism is V=lwh\boldsymbol{V}=\boldsymbol{l} \boldsymbol{w h}. Select a function, V(x)V(x), that represents the volume of the rectangular prism in terms of the width. V(x)=x(8x)(7x)V(x)=x(8 x)(-7 x) V(x)=x(x+8)(x+7)V(x)=x(x+8)(x+7) V(x)=x3V(x)=x^{3} V(x)=x(x8)(x+7)V(x)=x(x-8)(x+7)

See Solution

Problem 770

1. Tabitha is a van driver for a supermarket that provides home deliveries. Orders are packed into boxes for home delivery to customers. The dimensions of each box and the internal dimensions of the van are shown in the diagrams.
All boxes must be aligned in the same direction. Calculate the maximum number of boxes that will fit in the van.

See Solution

Problem 771

click here to watch the video. The measure of angle BB is 3939^{\circ}. Find the measure of angle HH.
Enter your answer in degrees. \square

See Solution

Problem 772

效, Find mIm \angle I.

See Solution

Problem 773

Watch the video and then solve the problem given below. Click here to watch the video. Find the area of a parallelogram with a base of 12 inches and height of 8 inches.
Enter the answer in square inches. \square square inches

See Solution

Problem 774

Find the sum of the measures of the angles of a ten-sided polygon.

See Solution

Problem 775

Describe each type of angle: acute, right, obtuse, and straight. A. An obtuse angle measures less than 9090^{\circ} and an acute angle measures more than 9090^{\circ}, but less than 180180^{\circ}. A right angle measures 180180^{\circ} and a straight angle measures 9090^{\circ}. B. An acute angle measures less than 9090^{\circ} and an obtuse angle measures more than 9090^{\circ}, but less than 180180^{\circ}. A right angle measures 9090^{\circ} and a straight angle measures 180180^{\circ}. C. A right angle measures less than 9090^{\circ} and a straight angle measures more than 9090^{\circ}, but less than 180180^{\circ}. An acute angle measures 9090^{\circ} and an obtuse angle measures 180180^{\circ}. D. A straight angle measures less than 9090^{\circ} and a right angle measures more than 9090^{\circ}, but less than 180180^{\circ}. An obtuse angle measures 9090^{\circ} and an acute angle measures 180180^{\circ}.

See Solution

Problem 776

8. A shape has only three angles, and only one of those angles measures 90 degrees. What is the name of the shape? A. circle C. triangle B. square D. right triangle
9. A carpenter is building a rectangular door. What kind of angles should she use for the corners? A. right C. obtuse B. acute D. straight

See Solution

Problem 777

Find the measure of the complement and the supplement of 8585^{\circ}.
What is the measure of the complement of 8585^{\circ} ? \square What is the measure of the supplement of 8585^{\circ} ? \square

See Solution

Problem 778

2 atson, Mizhane
What is the equation of the line that passes through the point (2,7)(-2,7) and has a slope of zero? (A) x=7x=7 (B) y=2y=-2 (C) x=2x=-2 (D) y=7y=7

See Solution

Problem 779

Find the measure of angle A for the triangle shown.

See Solution

Problem 780

and a height of 4 inches. At most, how many pyramids can the artiet make from the block of slabaster? A. 136 B. 144 C. 154 D. 166 E. 172 Reset Noxts

See Solution

Problem 781

Determine whether the following statement makes sense or does not make sense, and explain your reasoning. I paid $10\$ 10 for a pizza, so I would expect to pay approximately $20\$ 20 for the same kind of pizza with twice the radius. A. The statement makes sense because increasing the radius by a factor of two also increases the area by a factor of two. B. The statement does not make sense because increasing the radius by a factor of two increases the area by a factor of 4. C. The statement does not make sense because increasing the radius by a factor of two also increases the diameter by a factor of two. D. The statement makes sense because pizza prices are based on the radius of the pizza.

See Solution

Problem 782

Describe the difference between the formulas needed to solve the following problems: How much fencing is needed to enclose a circular garden? How much fertilizer is needed for a circular garden?
Fill in the blanks in the sentences below. To find the amount of fencing, the formula for the \square of a circle should be used; this formula is \square with units of \square To find the amount of fertilizer, the formula for the formula is \square with units of \square of a circle should be used; this \square

See Solution

Problem 783

10. A line is graphed on a coordinate grid.
Which statement best describes the line? The equation of the line is x=6x=6, and the slope is equal to 0 .
The equation of the line is y=6y=6, and the slope is equal to 0 . The equation of the line is x=6x=6, and the slope is undefined.

See Solution

Problem 784

Solve the following system of equations graphically on the set of axes below. y=32x8x2y=8\begin{array}{c} y=-\frac{3}{2} x-8 \\ x-2 y=8 \end{array}
Plot two lines by clicking the graph. Click a line to delete it.

See Solution

Problem 785

26. Kerzenständer*
Die Abbildung zeigt das Querschnittsdesign eines Kerzenständers für 3 cm dicke Kerzen. Seine Konturkurve kann durch die Funktion f(x)=18x2+2,0x5f(x)=\frac{1}{8} x^{2}+2,0 \leq x \leq 5, dargestellt werden. a) Berechnen Sie das massive Metallvolumen des 5 cm hohen Kerzenständers. b) Der Kerzenständer soll noch wits chafticher gestaltet werden. Dazu soll in Boden eine zylindrische Aussparung angeordnet werden (rot umrandet). Allerdings darf diese aus Stabililätsgriunden die eingezeichneten Grenzlinien (griun) nicht überschreiten. Wie viel Material spart man, wenn die Aussparung einen vorgegebenen Durchmesser von 4 cm erhält? c) Die Aussparung aus Aufgabenteil b) soll optimiert werden, d.h. sie soll ein möglichst großes Volumen haben. Wie groß muß ihr Durchmesser gewählt werden? Wie viel Material spart die optimale Aussparung?

See Solution

Problem 786

RSST.\overline{R S} \cong \overline{S T} .
Which term describes QS\overline{Q S} ? angle bisector altitude median perpendicular bisector Subrnit

See Solution

Problem 787

Look at the diagram.
Which term describes TR\overline{T R} ?
B \square median altitude angle bisector none of these

See Solution

Problem 788

1ath
The graph of a function is shown below. On which interval is the function increasing and nonlinear? g/Decreasing \&: Linear/Non- g vs. Decreasing Linear se Increasing or Decreasing ator Salmon Log Out

See Solution

Problem 789

3. If RT=36R T=36, find the value of xx.

See Solution

Problem 790

watch video
Determine the domain of the following graph:

See Solution

Problem 791

Estimate the xx - and yy-intercepts of the graph. x-intercept: 2 yy-intercept: 1 xx-intercept: 2 yy-intercept:-1 xx-intercept: -2 yy-intercept:-1 xx-intercept: -2 yy-intercept: 1 xx-intercept: 1 yy-intercept: 2

See Solution

Problem 792

h=10 cm s=11 cml=15 cm b=11 cm\mathrm{h}=10 \mathrm{~cm} \quad \mathrm{~s}=11 \mathrm{~cm} \quad \mathrm{l}=15 \mathrm{~cm} \quad \mathrm{~b}=11 \mathrm{~cm} Calculate the Area of each face of the triangular prism. Then solve for the Surface Area.
Surface Area = \square cm2\mathrm{cm}^{2} Submit Question

See Solution

Problem 793

3.
Equation: \qquad

See Solution

Problem 794

Die Fahrnadtour Am Wandentag eines Gymnasiums in Engelskirchen plant eine Klasse eine Fahrrädtour. Die Lehrerin befürchtet, dass ungeibbte Radfahrer an steileren Stellen absteigen und das Rad schieben müssen. So schnell wollen die Schüler nicht aufgeben; sie suchen deshalb eine geeignete Strecke aus und vérsuchen, die Be fügchtungen ihrer Lehrerin zu widerlegen.
Abbac Höhenprofil der Fahrradtour.
1. Aufgabe:

Es lassen sich mittlere. Steigungen zwischen je 2 Punkten bestimmen; veranschauliche dies im Höhenprofilgraphen durch Einzeichnen geeigneter VerbinUungsstrecken.
2. Aufgabe:

Bestimmé die mittleren Steigungen zwischen a) P2 und P3 c) PG und P7 b) P4P 4 und P5P 5 d) P8P 8 und P9P 9
3. Aufgabe:

Entwickle eine allgemeine Form zur Bestimung der mittleren Steigung eines streckerbschnittes.

See Solution

Problem 795

ANGLE-SIDE-ANGLE
PM = \qquad 52+52\sqrt{5^{2}+5} 2 AC=A C= \qquad
Congruence Sta

See Solution

Problem 796

In ΔQRS,RS=9,SQ=11\Delta \mathrm{QRS}, \mathrm{RS}=9, \mathrm{SQ}=11, and QR=7\mathrm{QR}=7. Which list has the angles of ΔQRS\Delta \mathrm{QRS} in order from smallest to largest?
Answer mR, mQ, mS\mathrm{m} \angle R, \mathrm{~m} \angle Q, \mathrm{~m} \angle S mQ, mR, mS\mathrm{m} \angle Q, \mathrm{~m} \angle R, \mathrm{~m} \angle S Submit Answer mS, mQ, mR\mathrm{m} \angle S, \mathrm{~m} \angle Q, \mathrm{~m} \angle R mS, mR, mQ\mathrm{m} \angle S, \mathrm{~m} \angle R, \mathrm{~m} \angle Q mR, mS, mQ\mathrm{m} \angle R, \mathrm{~m} \angle S, \mathrm{~m} \angle Q mQ, mS, mR\mathrm{m} \angle Q, \mathrm{~m} \angle S, \mathrm{~m} \angle R

See Solution

Problem 797

What type of angle measures 3636^{\circ} ? adjacent obtuse acute opposite

See Solution

Problem 798

What is the circumference of a circle? the length of a line passing across the circle through the center the length of a line from the center to any point on the circle the distance around the outside of the circle the amount of space contained within the circle

See Solution

Problem 799

Education Quiz: The Pedestrian ChatGPT Student Assessment https//studentvue.phoenixunion.org/gb_StudentAssessment.aspx?SID =439301\&STID =5630\&NP =1\&portal=false\&FOCUS_KEY= Geom U4 Quiz 2H H1 Pulgarin Zapata, Anette \# 1 of 10
1 If CFEPRT\triangle \mathrm{CFE} \cong \triangle \mathrm{PRT}, complete each of the following statements. CETRCF\begin{array}{l} \overline{C E} \cong \\ \overline{T R} \cong \\ \overline{C F} \cong \end{array} PR Select One Select One P\angle P \cong \angle Select One \vee E\angle E \cong \angle Select One FT\angle F \cong \angle T RPT\triangle \mathrm{RPT} \cong \triangle Select One FEC\triangle F E C \cong \triangle Select One \square RTP\triangle R T P \cong \triangle Select One  ~ \vee

See Solution

Problem 800

A. Exercises
Use the xx-and yy-intercepts to graph each linear equation.
1. x+y=2x+y=2
2. x2y=6x-2 y=6
4. 2xy=32 x-y=3
5. 4x+2y=124 x+2 y=12
3. 5x3y=155 x-3 y=15
6. 2x+y=42 x+y=4

Use the yy-intercept and slope to graph each linear equation.
7. y=x5y=x-5
8. y=3xy=3 x
10. 3x+y=13 x+y=1
11. x+3y=12x+3 y=12
9. y=2x+3y=2 x+3

Graph both the horizontal and the vertical line that contain the sive
13. (2,3)(2,3)
14. (1,4)(-1,-4)

Write the equation of each graphed line in slope-interces \quad 15. (5,4)(-5,4)

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord