Function

Problem 10201

Determine if the car is moving left or right at t=8t=8 for the function s(t)=4t310t2+t4s(t)=-4 t^{3}-10 t^{2}+t-4.

See Solution

Problem 10202

Find the acceleration function a(t)a(t) for the particle with position s(t)=3t2t+1s(t)=-3t^{2}-t+1 (in meters) at time tt.

See Solution

Problem 10203

Find the acceleration of the particle at t=3t=3 seconds for the function s(t)=t33t28t+1s(t)=t^{3}-3 t^{2}-8 t+1. Answer in ft/s2\mathrm{ft} / \mathrm{s}^{2}.

See Solution

Problem 10204

Determine if the train, described by s(t)=t42t35t2+3s(t)=t^{4}-2 t^{3}-5 t^{2}+3, is speeding up or slowing down at t=2t=2 seconds.

See Solution

Problem 10205

Find the interval(s) where the hummingbird slows down for s(t)=t3+9t224t4s(t)=-t^{3}+9 t^{2}-24 t-4, t0t \geq 0.

See Solution

Problem 10206

Graph the function f(x)=x+44f(x)=|x+4|-4 and identify its domain and range.

See Solution

Problem 10207

A potato is shot up with a speed of 34ft/s34 \mathrm{ft/s} from a 15 ft tall building. Find how long it's in the air using s(t)=16t2+34t+15s(t)=-16 t^{2}+34 t+15.

See Solution

Problem 10208

Question: Poisson Distribution
Let X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n} be independent and identically distributed (i.i.d.) random variables, where each XiX_{i} follows a Poisson distribution with parameter λ>0\lambda>0. The probability mass function (PMF) for a Poisson random variable is given by:
Likelihood Estimation fo fX(x;λ)=λxeλx!,x=0,1,2,f_{X}(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2, \ldots where λ\lambda is the rate parameter of the Poisson distribution. (a) Write the likelihood function L(λ)L(\lambda) for the sample X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n}. (b) Derive the log-likelihood function (λ)=lnL(λ)\ell(\lambda)=\ln L(\lambda). (c) Find the Maximum Likelihood Estimator (MLE) for λ\lambda by solving e(λ)λ=\frac{\partial e(\lambda)}{\partial \lambda}= 0 . (d) Verify that the second derivative of the log-likelihood function at the MLE is negative, confirming that the MLE is indeed a maximum. (e) Find the Fisher information for λ,I(λ)=E[2(λ)λ2]\lambda, I(\lambda)=-E\left[\frac{\partial^{2} \ell(\lambda)}{\partial \lambda^{2}}\right]. (f) Using the MLE and Fisher information, calculate the Cramer-Rao lower bound for the variance of the MLE.

See Solution

Problem 10209

The mgf of a random variable XX is given by m(t)=(0,9+0.1et)3m(t)=\left(0,9+0.1 e^{t}\right)^{3}, then p(X=1)p(X=1) is equal to a. 0.0243 b. 0.536 c. 0.027 d. 0.725 e. 0.9

See Solution

Problem 10210

Marked out of 1.00
The moment generating function of a random variable X is given by m(t)=0.3et+0.4+0.3e2tm(t)=0.3 e^{-t}+0.4+0.3 e^{2 t}. Then the mean of X is given by a. 0.4 b. 0.3 c. 0.9 d. 1 e. 2.4

See Solution

Problem 10211

Find the interval(s) where the car moves left for s(t)=t3+6t2+36t+4s(t)=-t^{3}+6 t^{2}+36 t+4 with t0t \geq 0.

See Solution

Problem 10212

Find the ball's velocity when it first reaches 880ft880 \mathrm{ft}, given s(t)=16t2+256ts(t)=-16 t^{2}+256 t.

See Solution

Problem 10213

f(x)=xexxf(x)=x e^{x}-x is concave up ou?

See Solution

Problem 10214

8. If f(x)={x2+3f(x)=\left\{x^{2}+3\right. (A) a=1,b=3a=1, b=3 (B) 17\frac{1}{7} (C) 13\frac{1}{3} (D) 13\frac{1}{3} (B) a=x<03,b=0}\left.a=\begin{array}{c}x<0 \\ 3, b=0\end{array}\right\} and f(x)f(x) is differentiable at x=0x=0, then: (C) a=3,b=1a=3, b=1 (D) a=0,b=3a=0, b=3  (A) x=ln2 (B) x=ln5 (C) x=ln3\begin{array}{lll}\text { (A) } x=\ln 2 & \text { (B) } x=\ln 5 & \text { (C) } x=\ln 3\end{array} (D) x=2ln5x=2 \ln 5

See Solution

Problem 10215

- A është vlerësues i pazhvendosur? Pse? 5.24. Shqyrtojmë shpërndarjen eksponenciale të zhvendosur me densitet f(x)=λeλ(xs)f(x)=\lambda e^{-\lambda(x-s)} kuX5k u X \geq 5. Gjeni me anë të metodës së përgjasisë maksimale një vlerësues për λ\lambda ?

See Solution

Problem 10216

B) If the function f(x)=ax33x2+bx+cf(x)=a x^{3}-3 x^{2}+b x+c has a local minimum at -5 and a local maximum at x=12x=\frac{-1}{2} and inflection point at x=14x=\frac{1}{4} find a,b,cRa, b, c \in R.

See Solution

Problem 10217

Q3: A) Let M be a point moving on the curve y2=x3y^{2}=x^{3} such that rate of change the point MM getting away from of the origin point is 4 unit /s/ \mathrm{s}. Find the rate of chang of the x -coordinate for M when x=2x=2

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord