Decimals

Problem 801

Solve using the standard algorithm: 1.80.9=1.8 - 0.9 =

See Solution

Problem 802

Calculate 5.1820.095.182 - 0.09.

See Solution

Problem 803

Calculate 341.8421.92341.84 - 21.92.

See Solution

Problem 804

Average monthly snowfall in King Salmon, Alaska, is 45.9 inches÷7 months45.9 \text{ inches} \div 7 \text{ months}. Why is this reasonable?

See Solution

Problem 805

What was the hourly labor cost if Serenity paid $309.50\$ 309.50 total, with $62\$ 62 for parts and 4.5 hours of work?

See Solution

Problem 806

A store owner has 57.4 pounds of candy. If he divides it into 7 boxes, how many pounds will each box contain?

See Solution

Problem 807

Divide 9.13 by 0.58 and round the answer to the nearest hundredth.

See Solution

Problem 808

John worked 5.9 hours daily for 5 days. Calculate the total hours worked: 5.9×55.9 \times 5.

See Solution

Problem 809

Lisa spent \$8.74 on grapes at \$0.76 per pound. How many pounds did she buy?

See Solution

Problem 810

Each kitten's weight after gaining 2.3 ounces: initial weights were 3.6, 4.2, and 3.3 ounces. Find final weights.

See Solution

Problem 811

Is Jaime's calculation of 4.40.33=1.14.4 - 0.33 = 1.1 reasonable? Explain your reasoning.

See Solution

Problem 812

Calculate the product of 2.01 and 0.43: 2.01×0.432.01 \times 0.43.

See Solution

Problem 813

Convert 0.000000783 to scientific notation.

See Solution

Problem 814

Convert 19.2×10819.2 \times 10^{8} minutes to hours.

See Solution

Problem 815

Convert 19.2×10819.2 \times 10^{8} minutes to hours.

See Solution

Problem 816

Convert 6.16×1066.16 \times 10^{6} to standard form.

See Solution

Problem 817

Convert the number 0.00037 into scientific notation.

See Solution

Problem 818

What is the standard form of the number 6.14×1096.14 \times 10^{-9}? Drag the answer into the box.

See Solution

Problem 819

Calculate 275.75113.5+36.125275.75 - 113.5 + 36.125 and round to the correct significant figures.

See Solution

Problem 820

Find the sum of 9.245+3.57259.245 + 3.5725 and round to the correct significant figures.

See Solution

Problem 821

Calculate the sum of 5.295+33.75+2.125.295 + 33.75 + 2.12 and express your answer with the correct significant figures.

See Solution

Problem 822

Calculate 450/950.20450 / 950.20 and round to the correct number of significant figures using the division rule.

See Solution

Problem 823

Calculate 0.505÷0.20.505 \div 0.2 and round your answer to the correct number of significant figures.

See Solution

Problem 824

Calculate 3.25×102+3.572×103+6.125×1013.25 \times 10^{-2} + 3.572 \times 10^{-3} + 6.125 \times 10^{-1} and round to the correct significant figures.

See Solution

Problem 825

Determine the number of significant figures in the number 2.005×1092.005 \times 10^{-9}.

See Solution

Problem 826

Count the significant figures in the number 0.0700200.070020.

See Solution

Problem 827

Count the significant figures in the number 1.001001.00100.

See Solution

Problem 828

Estima el cociente. 28.3÷928.3 \div 9 A. 30 B. 10 C. 1 D. 3

See Solution

Problem 829

Estima el cociente. 4.81÷0.974.81 \div 0.97 5 1 0 50

See Solution

Problem 830

Estima el cociente redondeando cada número al número entero más cercano. 33.7÷9.533.7 \div 9.5
Escribe tu respuesta en el recuadro.

See Solution

Problem 831

(7.01×103)+(5.6×101)\left(7.01 \times 10^{3}\right)+\left(5.6 \times 10^{-1}\right)
PLY YOUR SKILLS Find the number of second The speed of liaht is appro

See Solution

Problem 832

Calculate the total bill for a table with a ham sandwich, meatball hoagie, fries, iced tea, and lemonade.

See Solution

Problem 833

You drive 1,820 miles for 36 hours, earning \$0.60 per mile. How much will you earn? Options: A. \$21.60 B. \$1,092.00 C. \$2,092.00 D. \$10,920.00 F. \$65,520.00

See Solution

Problem 834

Calculate: 78.084molL×42L78.084 \frac{\mathrm{mol}}{\mathrm{L}} \times 42 \mathrm{L}, 7.8084molL×0.9L7.8084 \frac{\mathrm{mol}}{\mathrm{L}} \times 0.9 \mathrm{L}, and 626.45mol÷34.3L626.45 \mathrm{mol} \div 34.3 \mathrm{L}.

See Solution

Problem 835

Calculate the following: 78.084molL×42L78.084 \frac{\mathrm{mol}}{\mathrm{L}} \times 42 \mathrm{L}, 7.8084molL×0.9L7.8084 \frac{\mathrm{mol}}{\mathrm{L}} \times 0.9 \mathrm{L}, and 626.45mol÷34.3L626.45 \mathrm{mol} \div 34.3 \mathrm{L}.

See Solution

Problem 836

Calculate the total cost to pave a 2-mile, 20-foot-wide road at \$23.35 per linear foot.

See Solution

Problem 837

Multiply or divide these measurements, ensuring answers have correct significant digits:
1. 20.947gmL×25mL=g20.947 \frac{\mathrm{g}}{\mathrm{mL}} \times 25 \mathrm{mL} = \square \mathrm{g}
2. 996.90mol÷33.96L=molL996.90 \mathrm{mol} \div 33.96 \mathrm{L} = \square \frac{\mathrm{mol}}{\mathrm{L}}
3. 978.4g÷0.53mL=gmL978.4 \mathrm{g} \div 0.53 \mathrm{mL} = \square \frac{\mathrm{g}}{\mathrm{mL}}

See Solution

Problem 838

Calculate the following:
1) 78.08molL×40L=mol78.08 \frac{\mathrm{mol}}{\mathrm{L}} \times 40 \mathrm{L} = \square \mathrm{mol}
2) 0.93molL×2.025L=mol0.93 \frac{\mathrm{mol}}{\mathrm{L}} \times 2.025 \mathrm{L} = \square \mathrm{mol}
3) 599.25m÷42.528s=ms599.25 \mathrm{m} \div 42.528 \mathrm{s} = \square \frac{\mathrm{m}}{\mathrm{s}}

See Solution

Problem 839

Calculate the following: 15.707 g - 1.47 g, 6.727 g + 1.40 g, and 8.87 g - 0.600 g.

See Solution

Problem 840

Calculate the following: 8.627 mL + 1.77 mL = ?, 2.900 mL + 18.8 mL = ?, 15.82 mL - 0.577 mL = ?

See Solution

Problem 841

Calculate the following: 1) 10.970 g1.17 g=10.970 \mathrm{~g}-1.17 \mathrm{~g}= ? 2) 3.907 g1.57 g=3.907 \mathrm{~g}-1.57 \mathrm{~g}= ? 3) 17.50 g+0.7 g=17.50 \mathrm{~g}+0.7 \mathrm{~g}= ?

See Solution

Problem 842

Calculate the following: 15.527 g - 1.5 g = \square g, 13.900 g + 0.87 g = \square g, 1.920 g - 0.8 g = \square g.

See Solution

Problem 843

Multiply or divide these measurements:
1. 78.08molL×40L=mol78.08 \frac{\mathrm{mol}}{\mathrm{L}} \times 40 \mathrm{L} = \square \mathrm{mol}
2. 0.93molL×2.025L=mol0.93 \frac{\mathrm{mol}}{\mathrm{L}} \times 2.025 \mathrm{L} = \square \mathrm{mol}
3. 599.25m÷42.528s=ms599.25 \mathrm{m} \div 42.528 \mathrm{s} = \square \frac{\mathrm{m}}{\mathrm{s}}

See Solution

Problem 844

Calculate the following: 15.700 mL13.80 mL=mL15.700 \mathrm{~mL}-13.80 \mathrm{~mL}=\square \mathrm{mL}, 8.70 mL+17.6 mL=mL8.70 \mathrm{~mL}+17.6 \mathrm{~mL}=\square \mathrm{mL}, 16.920 mL+0.5 mL=mL16.920 \mathrm{~mL}+0.5 \mathrm{~mL}=\square \mathrm{mL}.

See Solution

Problem 845

Add or subtract these measurements, ensuring the correct significant digits:
8.70 mL - 7.8 mL = \square mL 17.570 mL + 18.8 mL = \square mL 11.9 mL + 13.577 mL = \square mL

See Solution

Problem 846

Add or subtract these measurements, ensuring the correct significant digits:
8.700 g + 1.37 g = \square g 16.600 g - 0.70 g = \square g 7.827 g - 1.2 g = \square g

See Solution

Problem 847

Calculate the following volumes: 1) 7.57 mL+11.7 mL=mL7.57 \mathrm{~mL} + 11.7 \mathrm{~mL} = \square \mathrm{mL} 2) 19.5 mL+9.977 mL=mL19.5 \mathrm{~mL} + 9.977 \mathrm{~mL} = \square \mathrm{mL} 3) 17.500 mL9.8 mL=mL17.500 \mathrm{~mL} - 9.8 \mathrm{~mL} = \square \mathrm{mL}

See Solution

Problem 848

Perform the following calculations with correct significant digits:
1. 2.800 g1.47 g=g2.800 \mathrm{~g}-1.47 \mathrm{~g}=\square \mathrm{g}
2. 1.700 g0.57 g=g1.700 \mathrm{~g}-0.57 \mathrm{~g}=\square \mathrm{g}
3. 14.700 g+1.3 g=g14.700 \mathrm{~g}+1.3 \mathrm{~g}=\square \mathrm{g}

See Solution

Problem 849

Calculate: 20.94 g/mL × 33 mL = ? g and 496.3 m ÷ 0.90 s = ? m/s.

See Solution

Problem 850

Multiply or divide these measurements, ensuring correct significant digits:
1. 2.094 cm×1.10 cm=cm22.094 \mathrm{~cm} \times 1.10 \mathrm{~cm} = \square \mathrm{cm}^{2}
2. 20.94gmL×33mL=g20.94 \frac{\mathrm{g}}{\mathrm{mL}} \times 33 \mathrm{mL} = \square \mathrm{g}
3. 496.3 m÷0.90 s=ms496.3 \mathrm{~m} \div 0.90 \mathrm{~s} = \square \frac{\mathrm{m}}{\mathrm{s}}

See Solution

Problem 851

Calculate the following: 78.08 cm × 50 cm = \square cm², 792.4 g ÷ 43.37 mL = \square g/mL, 0.93 g/mL × 4.925 mL = \square g.

See Solution

Problem 852

Convert 5.0 miles/hour to meters/second. Show your work and express your answer as a decimal number. (6 pts)

See Solution

Problem 853

Convert fingernail growth of 2.50 cm/year to km/s. Show work and express answer in scientific notation. (6 pts)

See Solution

Problem 854

Multiply or divide these measurements, ensuring correct significant digits:
2.09molL×4.60 L=mol2.09 \frac{\mathrm{mol}}{\mathrm{L}} \times 4.60 \mathrm{~L}=\square \mathrm{mol},
20.9 cm×22 cm=cm220.9 \mathrm{~cm} \times 22 \mathrm{~cm}=\square \mathrm{cm}^{2},
137.1 g÷0.43 mL=gmL137.1 \mathrm{~g} \div 0.43 \mathrm{~mL}=\square \frac{\mathrm{g}}{\mathrm{mL}}.

See Solution

Problem 855

Multiply or divide these measurements with proper significant digits:
1. 20.947gmL×32mL=g20.947 \frac{\mathrm{g}}{\mathrm{mL}} \times 32 \mathrm{mL} = \square \mathrm{g}
2. 914.4g÷0.65mL=gmL914.4 \mathrm{g} \div 0.65 \mathrm{mL} = \square \frac{\mathrm{g}}{\mathrm{mL}}
3. 0.934cm×1.125cm=cm20.934 \mathrm{cm} \times 1.125 \mathrm{cm} = \square \mathrm{cm}^{2}

See Solution

Problem 856

Count the significant figures in 0.0157 kg. [Choose]

See Solution

Problem 857

Calculate the product of 3.15, 2.5, and 4.00 with the correct significant figures: 3.15×2.5×4.00=3.15 \times 2.5 \times 4.00 =

See Solution

Problem 858

Find the result of 313.0(1.2×103)313.0 - (1.2 \times 10^{3}) with the correct significant figures.

See Solution

Problem 859

Calculate (4.123×0.12)+24.2(4.123 \times 0.12) + 24.2 and give the result with the right significant figures.

See Solution

Problem 860

Calculate (17.103+2.03)×1.02521(17.103 + 2.03) \times 1.02521 with the correct number of significant figures.

See Solution

Problem 861

Report the significant digits in the calculation: (4.33.7)×12.3=(4.3-3.7) \times 12.3=

See Solution

Problem 862

5 Ordina i numeri nel riquadro, dal più piccolo al più grande. Aggiungi zeri se serve. a) 0,0,10,090,100,110,020,0,1 \quad 0,09 \quad 0,10 \quad 0,11 \quad 0,02 b) 2,0212,0020,0202,2021,22,021 \quad 2,002 \quad 0,020 \quad 2,202 \quad 1,2

See Solution

Problem 863

7 Scrivi in cifre. a) 8 unità e2e 2 centesimi b) 3 decine e 4 decimi c) 0 unità 7 millesimi d) 1 centinaio e 34 millesimi.

See Solution

Problem 864

a) Qual è il più piccolo numero con due cifre decimali che soddisfa la condizione n4,2n \geq 4,2 ? b) Quale numero sulla retta si trova alla stessa distanza dai numeri 0,53 e 0,56 ?

See Solution

Problem 865

Calculate the total cost for remodeling: 3 cans of paint at \$13.22, 2 brushes at \$12.22, and a helper for \$145.

See Solution

Problem 866

Convert the fraction 38\frac{3}{8} to a decimal.

See Solution

Problem 867

Find the decimal form of 59\frac{5}{9}. Choose from: A. 9.59.\overline{5} B. 0.50.\overline{5} C. 0.5 D. 5.55.\overline{5}

See Solution

Problem 868

Convert the fraction 1011\frac{10}{11} into a decimal. Choose the correct option. A. 0.900 . \overline{90} B. 0.190 C. 0.1900.1 \overline{90} D. 0.90

See Solution

Problem 869

Convert the number 5.7×1075.7 \times 10^{7} to decimal notation.

See Solution

Problem 870

Convert 9.26×1039.26 \times 10^{3} to decimal notation. What is the result?

See Solution

Problem 871

Convert the number 8.5×1018.5 \times 10^{-1} to decimal form. What is it?

See Solution

Problem 872

Convert the number 5.51×1045.51 \times 10^{-4} to decimal notation.

See Solution

Problem 873

Convert 0.00052 to scientific notation: 0.00052=0.00052 =

See Solution

Problem 874

Convert the number 0.20×1040.20 \times 10^{4} into scientific notation: 0.20×104=×0.20 \times 10^{4}=\square \times.

See Solution

Problem 875

Express 0.000064 in scientific notation: 0.000064=0.000064 =

See Solution

Problem 876

Compute and express in decimal: (2×108)(2×105)=(2 \times 10^{8})(2 \times 10^{-5}) = \square (Type an integer or decimal.)

See Solution

Problem 877

Calculate (9.7×108)(4×106)(9.7 \times 10^{8}) \cdot (4 \times 10^{-6}) and give the answer in decimal form.

See Solution

Problem 878

Compute and express in decimal: 12×1074×102\frac{12 \times 10^{7}}{4 \times 10^{2}}

See Solution

Problem 879

Calculate and express in decimal form: 4.4×1072×103\frac{4.4 \times 10^{-7}}{2 \times 10^{-3}}.

See Solution

Problem 880

Convert 0.00040.0004 and 8,000,0008,000,000 to scientific notation, then calculate (0.0004)(8,000,000)(0.0004)(8,000,000) in scientific notation.

See Solution

Problem 881

Convert 0.00040.0004 and 8,000,0008,000,000 to scientific notation and find their product in scientific notation.

See Solution

Problem 882

Express 2.36 trillion in scientific notation.

See Solution

Problem 883

For a country, find the scientific notation for 2.36 trillion taxes and 316 million population, then calculate tax per citizen.

See Solution

Problem 884

Convert 15.55 trillion to scientific notation.

See Solution

Problem 885

In 2014, taxes were \$2.36 trillion and population was 316 million. Find tax per citizen in scientific notation.

See Solution

Problem 886

For a country with a national debt of 15.55 trillion, express it in scientific notation: 1.555×10131.555 \times 10^{13}. Also, express \$70,000 in scientific notation.

See Solution

Problem 887

Find the scientific notation for 15.55 trillion and \$70,000, then calculate how many citizens can get free college education.

See Solution

Problem 888

A bottle has 0.068 L0.068 \mathrm{~L} of cough syrup. If 5 mL is taken 4 times daily, how many days until a refill?

See Solution

Problem 889

Convert the following metric units: 1) 0.649μL=?mL0.649 \mu \mathrm{L} = ? \mathrm{mL} 2) 55.3km=?m55.3 \mathrm{km} = ? \mathrm{m}

See Solution

Problem 890

Find the mass of 30,000 oxygen molecules given that one molecule has a mass of 5.3×10235.3 \times 10^{-23} gram. Answer in scientific notation: \square gram.

See Solution

Problem 891

Convert the fraction 18\frac{1}{8} to a decimal. What is 18=\frac{1}{8}=?

See Solution

Problem 892

Calculate the decimal value of 8.4×1074×104\frac{8.4 \times 10^{-7}}{4 \times 10^{-4}}.

See Solution

Problem 893

Convert 0.00014 to scientific notation. 0.00014=a×10b0.00014 = a \times 10^b (use multiplication symbol as needed).

See Solution

Problem 894

Estimate the sum of 6.86+2.11+19.336.86 + 2.11 + 19.33 by rounding to the nearest integer. Compare the estimate with the actual sum.

See Solution

Problem 895

Estimate the product of 20.17×2.520.17 \times 2.5 by rounding for easy calculation, then compare it to the actual answer.

See Solution

Problem 896

Estimate the product of 20.23×8.520.23 \times 8.5 by rounding. Compare your estimate to the actual answer. What is your estimate?

See Solution

Problem 897

Convert 5.31 L to deciliters. Use the conversion: 1 L = 10 dL.

See Solution

Problem 898

Convert 2.93dg2.93 \, \text{dg} and 0.0481μg0.0481 \, \mu \text{g} to grams.

See Solution

Problem 899

Count the significant figures in these values: 0.052000, 0.05, 10590, 3000, 2300, 0.0090, 7.000.

See Solution

Problem 900

Round the following calculations to the correct significant figures:
1. 23.723.37\frac{23.72}{3.37}
2. 9+2.80.135+10.69 + 2.8 - 0.135 + 10.6
3. (23.723.37)+4.4\left(\frac{23.72}{3.37}\right) + 4.4

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord