Analyze

Problem 11601

Graph f(x)=log2(1x)f(x)=\log _{2}(1-x) below. First locate the vertical asymptote, then plot two points on the graph.
Clear All Draw: \square Check Answer

See Solution

Problem 11602

Question 1
A car dealership claims that there is a difference in the mean credit scores of customers who buy cars in the first quarter of the fiscal year and those who buy cards in the last quarter of the fiscal year. The results of a random survey of 298 customers from the first quarter of the fiscal year and 246 customers from the last quarter of the fiscal year are shown below. The two samples are independent. Do the results support the dearlership's claim? Use alpha =0.05=0.05. \begin{tabular}{|c|c|} \hline First Quarter & Last Quarter \\ \hlinen1=298n_{1}=298 & n2=246n_{2}=246 \\ \hline xˉ1=561\bar{x}_{1}=561 & xˉ2=570\bar{x}_{2}=570 \\ \hlineσ1=51\sigma_{1}=51 & σ2=50\sigma_{2}=50 \\ \hline \end{tabular} a. Given the alternative hypothesis, the test is Select an answer \vee b. Determine the test statistic. Round to two decimal places. test statistic == \square c. Find the critical value(s). If there are two, just input the positive critical value. critical value == \square d. Make a decision. Reject the null hypothesis. Fail to reject the null hypothesis.

See Solution

Problem 11603

Determine if the graph can represent a polynomial function. If so, assume that the end behavior and all turning points are represented in the graph. (a) Determine the minimum degree of the polynomial. (b) Determine whether the leading coefficient is positive or negative based on the end behavior and whether the degree of the polynomial is odd or even. (c) Approximate the real zeros of the function, and determine if their multiplicities are even or odd.

See Solution

Problem 11604

23. Car repairs A consumer organization estimates that over a oneyear period 17%17 \% of cars will need to be repaired once, 7%7 \% will need repairs twice, and 4%4 \% will require three or more repairs. What is the probability that a car chosen at random will need a) no repairs? b) no more than one repair? c) some repairs?

See Solution

Problem 11605

Use a tt-distribution to find a confidence interval for the difference in means μd=μ1μ2\mu_{d}=\mu_{1}-\mu_{2} using the relevant sample results from paired data. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using d=x1x2d=x_{1}-x_{2}.
A 95\% confidence interval for μd\mu_{d} using the paired data in the following table: \begin{tabular}{l|ll} \hline Case & \begin{tabular}{l} Situation \\ 1 \end{tabular} & \begin{tabular}{l} Situation \\ 2 \end{tabular} \\ \hline 1 & 78 & 86 \\ 2 & 80 & 85 \\ 3 & 95 & 90 \\ 4 & 62 & 78 \\ 5 & 71 & 78 \\ 6 & 72 & 62 \\ 7 & 84 & 88 \\ 8 & 91 & 92 \\ \hline \end{tabular}
Give the best estimate for μd\mu_{d}, the margin of error, and the confidence interval. Enter the exact answer for the best estimate, and round your answers for the margin of error and the confidence interval to two decimal places. best estimate == \square 3.5-3.5 margin of error = \square \square 6.71-6.71
The 95%95 \% confidence interval is to i 3.21 \square

See Solution

Problem 11606

Find the center of the ellipse defined by the equation (x+1)29+(y+3)216=1\frac{(x+1)^{2}}{9}+\frac{(y+3)^{2}}{16}=1. If necessary, round to the nearest tenth.
Answer Attempt 1 out of 2
Center: \square , \square

See Solution

Problem 11607

31
14 Jadual 2 menunjukkan maklumat berkaitan empat jenis bahan yang digunakan untuk membuat kasut berjenama Lipo pada tahun 2019 dan 2022, serta peratus penggunaan masing-masing.
Table 2 shows the information related to four materials used in making Lipo branded shoes in years 2019 and 2022, and their respective percentage of usage. \begin{tabular}{|c|c|c|c|c|} \hline Bahan & \begin{tabular}{c} Kos pada \\ tahun 2019 \\ Material \\ Cost in the \\ year 2019 \\ (RM) \end{tabular} & \begin{tabular}{c} Kos pada \\ tahun 2022 \\ Cost in the \\ year 2022 \\ (RM) \end{tabular} & \begin{tabular}{c} Indeks harga \\ pada tahun \\ 2022 \\ berasaskan \\ tahun 2019 \\ Price index in \\ 2022 based on \\ 2019 \end{tabular} & \begin{tabular}{c} Peratus \\ penggunaan \\ Percentage \\ of usage \end{tabular} \\ \hline A & mm & 40 & 160 & 40 \\ \hlineBB & 35 & 38 & 108.57 & 30 \\ \hlineCC & 160 & nn & 107.50 & 10 \\ \hlineDD & 85 & 85 & 100 & 20 \\ \hline \end{tabular}
Jadual 2 Table 2 (a) Cari nilai mm dan nn.
Find the value of mm and of nn. [3 markah] [3 marks] (b) Hitung indeks gubahan bagi kos membuat kasut tersebut pada tahun 2022 berasaskan tahun 2019. Calculate the composite index for the cost of making the shoes in the year of 2022 based on the year 2019. [2 markah] [2 marks] (c) Diberi bahawa harga kos sepasang kasut Lipo ialah RM 100 dan dijual dengan keuntungan sebanyak RM 50 pada tahun 2019. Hitung harga jual kasut Lipo yang sepadan pada tahun 2022. Given that the cost price of a pair of Lipo shoes is RM 100 and sold at a profit of RM 50 in 2019. Calculate the corresponding selling price of the Lipo shoes in the year 2022. [2 markah] [2 marks]

See Solution

Problem 11608

What is the unit price of a quart of juice for $0.79?\$ 0.79 ? A. $3.16/\$ 3.16 / gallon B. 3 half-gallons for $5.40\$ 5.40 C. $3.16/lb\$ 3.16 / \mathrm{lb} D. 7 pints for $4.20\$ 4.20

See Solution

Problem 11609

Which of these is a point?
Choose 1 answer: (A) (B) \longleftrightarrow (C) (D)
D

See Solution

Problem 11610

For f(x)=6x+2f(x)=\frac{6}{x+2} and g(x)=3xg(x)=\frac{3}{x}, find a. (fg)(x)(f \circ g)(x); b. the domain of fgf \circ g a. (fg)(x)=(f \circ g)(x)= \square (Simplify your answer.) b. What is the domain of fgf \circ g ?
The domain is \square (Simplify your answer. Type your answer in interval notation. Use integers or

See Solution

Problem 11611

WeBWorK 5 - Topics 10 - 12: Problem 12 (1 point)
Determine whether the integral is divergent or convergent. If it is convergent, evaluate it. If not, state your answer as "divergent". 28(x+5)3/2dx=\int_{2}^{\infty} \frac{8}{(x+5)^{3 / 2}} d x= \square
Preview My Answers Submit Answers
You have attempted this problem 0 times.

See Solution

Problem 11612

A student proposes the following Lewis structure for the water (H2O)\left(\mathrm{H}_{2} \mathrm{O}\right) molecule. HOH\mathrm{H}-\mathrm{O}-\mathrm{H}
Assign a formal charge to each atom in the student's Lewis structure. \begin{tabular}{|c|c|} \hline atom & formal charge \\ \hline left H & \square \\ \hlineOO & \square \\ \hline right H & \square \\ \hline \end{tabular}

See Solution

Problem 11613

Problem Value: 1 point(s). Problem Score: 0\%. Attempts Remaining: 6 attempts. (1 point) Find all zeros and vertical asymptotes of the rational function f(x)=x225x2+25f(x)=\frac{x^{2}-25}{x^{2}+25}
If there is more than one answer, enter your answers as a comma separated list. If there is no solution, enter NONE. Do not leave a blank empty. (a) Find the xx-intercept(s). Enter xx-intercepts as points, if there is more than one answer enter them separated by commas. If there is no xx-intercept type in none . \square Help on points. (b) Find the yy-intercept(s). Enter yy-intercepts as points, if there is more than one answer enter them separated by commas. If there is no yy-intercept type in none . \square Help on points. (c) Enter the equations of the vertical asymptotes (e.g., x=20,x=7x=20, x=-7 ). \square Help on equations.

See Solution

Problem 11614

Fill in the blank so that the resulting statement is true. If log7(x+5)=4\log _{7}(x+5)=4, then \qquad =x+5=x+5.
If log7(x+5)=4\log _{7}(x+5)=4, then \square =x+5=x+5.

See Solution

Problem 11615

6. f(x)=9x4+142x3+102x21386x+3f(x)=9 x^{4}+142 x^{3}+102 x^{2}-1386 x+3 has a maximum or minimum at the points where x=1.5x=1.5 and where x=73x=-\frac{7}{3}. Use instantaneous rates of change to verify this, and to classify each as a maximum or a minimum. [8 marks]

See Solution

Problem 11616

An 80.0 kg man stands on a scale inside an elevator. What is the weight in Newtons that the scale reads when the elevator is: a. At rest b. Moving upward at a constant speed of 5.00 m/s5.00 \mathrm{~m} / \mathrm{s} c. Moving downward at a constant speed of 5.00 m/s5.00 \mathrm{~m} / \mathrm{s} d. Moving with an upward acceleration of 3.00 m/s/s3.00 \mathrm{~m} / \mathrm{s} / \mathrm{s} e. Moving with a downward acceleration of 4.00 m/s/s4.00 \mathrm{~m} / \mathrm{s} / \mathrm{s}

See Solution

Problem 11617

Question 16 of 19, Step 1 of 1 Correct
Consider the following data set. The square footage prices of apartments in a new building where the top floor alone contains one apartment and all other floors contain ten. Would you be more interested in looking at the mean, median, or mode? State your reasoning.
Answer First, select the correct measure of center and then select the justification for your choice. Correct measure of center mean median mode
Justification the data have no measurable values the data have measurable values with outliers the data have measurable values with no outliers

See Solution

Problem 11618

Find the area under y=4cos(x)y=4 \cos (x) and above y=4sin(x)y=4 \sin (x) for π2x3π2\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}. (Note that this area may not be defined over the entire interval.) area == \square

See Solution

Problem 11619

h(x)={5x17, for x<31, for 3x<1x+4, for x1h(10)=h(2)=h(1)=h(4)=\begin{array}{l}h(x)=\left\{\begin{array}{ll}-5 x-17, & \text { for } x<-3 \\ 1, & \text { for }-3 \leq x<1 \\ x+4, & \text { for } x \geq 1\end{array}\right. \\ h(-10)=\square \\ h(-2)=\square \\ h(1)=\square \\ h(4)=\square\end{array}

See Solution

Problem 11620

d. The pp-value == 0.0735 \qquad (Please show your answer to 4 decimal places.) e. The pp-value is \square α\alpha f. Based on this, we should fail to reject
0 the null hypothesis. g. Thus, the final conclusion is that ... The data suggest the populaton proportion is significantly smaller than 53%53 \% at α=0.05\alpha=0.05, so there is sufficient evidence to conclude that the population proportion of students who played intramural sports who received a degree within six years is smaller than 53%53 \% The data suggest the population proportion is not significantly smaller than 53%53 \% at α=0.05\alpha=0.05, so there is not sufficient evidence to conclude that the population proportion of students who played intramural sports who received a degree within six years is smaller than 53%53 \%. The data suggest the population proportion is not significantly smaller than 53%53 \% at α=0.05\alpha=0.05, so there is sufficient evidence to conclude that the population proportion of students who played intramural sports who received a degree within six years is equal to 53%53 \%. h. Interpret the p-value in the context of the study. If the population proportion of students who played intramural sports who received a degree within six years is 53%53 \% and if another 257 students who played intramural sports are surveyed then there would be a 10.1%10.1 \% chance fewer than 49%49 \% of the 257 students surveyed received a degree within six years. There is a 53\% chance of a Type I error. If the sample proportion of students who played intramural sports who received a degree within six years is 49%49 \% and if another 257 such students are surveyed then there would be a 10.1%10.1 \% chance of concluding that fewer than 53%53 \% of all students who played intramural sports received a degree within six years. There is a 10.1%10.1 \% chance that fewer than 53%53 \% of all students who played intramural sports graduate within six years. i. Interpret the level of significance in the context of the study. If the population proportion of students who played intramural sports who received a degree within six years is 53%53 \% and if another 257 students who played intramural sports are surveyed then there would be a 5%5 \% chance that we would end up falsely concluding that the proportion of all students who played intramural sports who received a degree within six years is smaller than 53\% There is a 5%5 \% chance that the proportion of all students who played intramural sports who received a degree within six years is smaller than 53%53 \%. If the population proportion of students who played intramural sports who received a degree within six years is smaller than 53%53 \% and if another 257 students who played intramural sports are surveyed then there would be a 5%5 \% chance that we would end up falsely concluding that the proportion of all students who played intramural sports who received a degree within six years is equal to 53%53 \%. There is a 5%5 \% chance that aliens have secretly taken over the earth and have cleverly disguised themselves as the presidents of each of the countries on earth.

See Solution

Problem 11621

Scenario 2: Customers at IT Phone Call Center have been complaining that they are waiting too long for service. The managers at the call center have taken notice and asked you to do some investigating to determine the typical service time for their customers for morning shifts compared to evening shifts. You collect the following samples (time in minutes): - Morning shifts: 7,14,15,17,17,19,20,20,20,557,14,15,17,17,19,20,20,20,55 - Evening shifts: 2,10,11,13,21,21,29,32,33,46 A. Calculate the mean, median, and mode for each shift using the data above. Explain your calculations. B. Determine which descriptive statistic (mean, median, or mode) you would utilize to communicate the typical service time to your boss for each shift and why. In your explanation, lye sure to include which shift (morning or evening) has the quicker turn-around time.

See Solution

Problem 11622

g. Thus, the final conclusion is that ... The data suggest the population proportion is not significantly larger 60%60 \% at α=0.05\alpha=0.05, so there is sufficient evidence to conclude that the proportion of voters who prefer the Democratic candidate is equal to 60%60 \%. The data suggest the population proportion is not significantly larger 60%60 \% at α=0.05\alpha=0.05, so there is not sufficient evidence to conclude that the proportion of voters who prefer the Democratic candidate is larger 60\%. - The data suggest the populaton proportion is significantly larger 60%60 \% at α=0.05\alpha=0.05, so there is sufficient evidence to conclude that the proportion of voters who prefer the Democratic candidate is larger 60\% h. Interpret the p-value in the context of the study. There is a 0.33%0.33 \% chance that more than 60%60 \% of all voters prefer the Democratic candidate. - If the population proportion of voters who prefer the Democratic candidate is 60%60 \% and if another 222 voters are surveyed then there would be a 0.33%0.33 \% chance that more than 69%69 \% of the 222 voters surveyed prefer the Democratic candidate.
O If the sample proportion of voters who prefer the Democratic candidate is 69%69 \% and if another 222 voters are surveyed then there would be a 0.33%0.33 \% chance of concluding that more than 60%60 \% of all voters surveyed prefer the Democratic candidate. There is a 0.33%0.33 \% chance of a Type I error. i. Interpret the level of significance in the context of the study. If the population proportion of voters who prefer the Democratic candidate is 60%60 \% and if another 222 voters are surveyed then there would be a 5%5 \% chance that we would end up falsely concluding that the proportion of voters who prefer the Democratic candidate is larger 60\% There is a 5%5 \% chance that the proportion of voters who prefer the Democratic candidate is larger 60\%. There is a 5%5 \% chance that the earth is flat and we never actually sent a man to the moon. If the proportion of voters who prefer the Democratic candidate is larger 60\% and if another 222 voters are surveyed then there would be a 5%5 \% chance that we would end up falsely concluding that the proportion of voters who prefer the Democratic candidate is equal to 60%60 \%.

See Solution

Problem 11623

Complète le tableau suivant. \begin{tabular}{|c|l|l|l|l|} \hline Équation & Foyer(s) & Sommet(s) & Centre & \begin{tabular}{c} Équation des asymptotes \\ ou de la directrice \end{tabular} \\ \hline(x+2)216+(y+1)225=1\frac{(x+2)^{2}}{16}+\frac{(y+1)^{2}}{25}=1 & & (2,1)(-2,-1) & & \\ \hline(x3)2=8(y+4)(x-3)^{2}=8(y+4) & & (3,4)(3,-4) & & \\ \hlinex236(y4)264=1\frac{x^{2}}{36}-\frac{(y-4)^{2}}{64}=1 & & (0,2)(0,2) & & \\ \hline \end{tabular}

See Solution

Problem 11624

EXERCISES
1. An efficient way to find all the primes up to 100 is to arrange the numbers from 1 to 100 in six columns. As with the Sieve of Eratosthenes, cross out the multiples of 2, 3, 5, and 7. What pattern do you notice? (Hint: Look at the columns and diagonals.) \begin{tabular}{rrrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 \\ 37 & 38 & 39 & 40 & 41 & 42 \end{tabular}

See Solution

Problem 11625

12. The table shows values for the function f(x)f(x), while the graph shows values for the function h(x)h(x). Which function has the greater slope? Explain your answer. \begin{tabular}{|c|c|} \hlinexx & f(x)f(x) \\ \hline 1 & 7 \\ \hline 3 & 11 \\ \hline 5 & 15 \\ \hline 7 & 19 \\ \hline \end{tabular}

See Solution

Problem 11626

Question 10 (1 point) Find gfg \circ f and the domain of the composite function. f(x)=x2+4,g(x)=xf(x)=x^{2}+4, g(x)=\sqrt{x} a (x4)4\sqrt{(x-4)^{4}} Domain of gfg \circ f : all real numbers xx b (x4)4(x-4)^{4} Domain of gfg \circ f : all real numbers xx c x2+4\sqrt{x^{2}+4} Domain of gfg \circ f : all real numbers xx d (x+4)4\quad(x+4)^{4} Domain of gfg \circ f : all real numbers xx e (x+4)4\sqrt{(x+4)^{4}} Domain of gfg \circ f : all real numbers xx

See Solution

Problem 11627

Question 15 (1 point) Find (f/g)(x)(f / g)(x). f(x)=x24xg(x)=7xf(x)=x^{2}-4 x \quad g(x)=7-x a (f/g)(x)=x24x7x,x7\quad(f / g)(x)=\frac{x^{2}-4 x}{7-x}, x \neq-7 b (f/g)(x)=x27+4,x0\quad(f / g)(x)=\frac{x^{2}}{7}+4, x \neq 0 c (f/g)(x)=x47,x0(f / g)(x)=\frac{x-4}{7}, x \neq 0 d (f/g)(x)=x24x7x,x7(f / g)(x)=\frac{x^{2}-4 x}{7-x}, x \neq 7 e (f/g)(x)=x24x7x,x0\quad(f / g)(x)=\frac{x^{2}-4 x}{7-x}, x \neq 0

See Solution

Problem 11628

What is the basis of the new property in each of the following situations? What is the recognized gain or loss? Required: a. Rental house with an adjusted basis of $121,500\$ 121,500 exchanged for a personal-use river cottage with an FMV of $155,750\$ 155,750. b. General Motors common stock with an adjusted basis of $26,000\$ 26,000 exchanged for Quaker Oats common stock with an FMV of \19,000.c.Landandbuildingwithanadjustedbasisof19,000. c. Land and building with an adjusted basis of \27,350 27,350 used as a furniture repair shop exchanged for land and a building with an FMV of $57,900\$ 57,900 used as a car dealership. d. An office building with an adjusted basis of $23,800\$ 23,800 exchanged for a heavy-duty truck with an FMV of $29,950\$ 29,950. Both properties are held for 100\% business purposes. e. A residential rental property held for investment with an adjusted basis of $265,150\$ 265,150 exchanged for a warehouse to be held for investment with an FMV of \$214,000. Note: For all requirements, if no gain or loss is recognized, select "No gain or loss". \begin{tabular}{|l|l|l|} \hline & & Amount \\ \hline a. & Basis of the new property & \\ \hline a. & & \\ \hline b. & Basis of the new property & \\ \hline b. & & \\ \hline c. & Basis of the new property & \\ \hline c. & & \\ \hline d. & Basis of the new property & \\ \hline d. & \\ \hline e. & Basis of the new property & \\ \hline e. & & \\ \hline \end{tabular}

See Solution

Problem 11629

4. Find the degree of each vertex in the graph.
If Identify the even vertices and identify the odd vertices. $\$ Which vertices are adjacent to vertex AA ? * Which vertices are adjacent to vertex DD ?
1. Use vertices to describe two paths that start at vertex AA and and at vertex DD.
2. Use vertices to describe two paths that start at vertex BB and end at vertex DD.
3. Which edges shown on the graph are not included in the following path: E,E,D,C,B,AE, E, D, C, B, A ?
3. Which edges shown on the graph are not included in the following path: E,E,D,C,A,BE, E, D, C, A, B ?
3. Explain why edge CDC D is a bridge.
21. Explain why edge DED E is a bridge.
3. Identify an edge on the graph other than those in Exercises 31 and 32 that is a bridge.

See Solution

Problem 11630

Compare 0.0000635 and 0.000456 . Write <,><,>, or == in the blank. (1 point) 0.00006350.0004560.0000635 \square 0.000456
Check answer Remaining Attempts : 3

See Solution

Problem 11631

Use the vertex and intercepts to sketch the graph of the quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x2+6x+3f(x)=x^{2}+6 x+3
What is the vertex? \square (Type an ordered pair.)

See Solution

Problem 11632

GoC. Mail. Brai... Brai- 5.8 Ho. Des. 5.8 8-P- GoC
The population of a certain country since January 1, 1910 can be approximated by the model below, where tt is the number of years since January 1,19101,1910. P(t)=62.41+8.6e0.02579tP(t)=\frac{62.4}{1+8.6 e^{-0.02579 t}} where PP is the population of this country (in millions) tt years after January 1, 1910. (a) What was the population of this country on January 1, 1910? \square million (b) Use the function to approximate the population of this country on January 1, 1926. Round your answer to the nearest whole number. \square million (c) What is the limiting factor for this model? Do not round your answer. \square million (d) In what year will the population reach 19 million? Round your answer to the nearest year. \square (e) What will the term 8.6e0.02579t8.6 e^{-0.02579 t} approach as tt \rightarrow \infty ?

See Solution

Problem 11633

Compare 7.6×10257.6 \times 10^{-25} and 6.7×10526.7 \times 10^{-52}. Which statement is true? (1 poin 7.6×1025<6.7×10527.6 \times 10^{-25}<6.7 \times 10^{-52} 7.6×10256.7×10527.6 \times 10^{-25} \leq 6.7 \times 10^{-52} 7.6×1025>6.7×10527.6 \times 10^{-25}>6.7 \times 10^{-52} 7.6×1025=6.7×10527.6 \times 10^{-25}=6.7 \times 10^{-52}

See Solution

Problem 11634

Determine whether the relation in the mapping diagram is a function.
Use the drop-down arrows to complete the sentences.
The relation in the mapping diagram \square a function because \square

See Solution

Problem 11635

Which set of numbers is arranged in descending order? (1 poi 7.2×1030,7×1030,7.6×1025,7.2×10257.2 \times 10^{-30}, 7 \times 10^{-30}, 7.6 \times 10^{-25}, 7.2 \times 10^{-25} 7×1030.7.2×1025,7.2×1030.7.6×10257 \times 10^{-30} .7 .2 \times 10^{-25}, 7.2 \times 10^{-30} .7 .6 \times 10^{-25} 7.6×1025.7.2×1025.7.2×1030,7×10307.6 \times 10^{-25} .7 .2 \times 10^{-25} .7 .2 \times 10^{-30}, 7 \times 10^{-30} 7.6×1025,7.2×1030.7.2×1025.7×10307.6 \times 10^{-25}, 7.2 \times 10^{-30} .7 .2 \times 10^{-25} .7 \times 10^{-30}

See Solution

Problem 11636

Use transformations of the graph of f(x)=3xf(x)=3^{x} to graph the given function. Be sure to graph and give the equation of the asymptote. Use the graph to determine the function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs. g(x)=3x2g(x)=3^{x}-2
Graph g(x)=3x2g(x)=3^{x}-2 and its asymptote. Use the graphing tool to graph the function as a solid curve and the asymptote as a dashed line.

See Solution

Problem 11637

Name: Lauta Das Datum: 03.12.2024
Hilfsmittel: Tafelwerk, grafikfähiger Taschenrechner (kein CAS)
3. Leistungskontrolle 12/GK12 / \mathrm{GK}

Funktionenscharen \begin{tabular}{|c|c|c|c|c|c|c|} \hline & A. 1 & A. 2 & A. 3 & A. 4 & Σ\Sigma & \multirow{2}{*}{ Notenpunkte } \\ \hline maximale BE & 11 & 7 & 5 & 6 & 29 & \\ \hline erreichte BE & & & & & & \\ \hline \end{tabular}
1. Es sind die Funktionenschar faf_{a} mit fa(x)=ax3f_{a}(x)=a \cdot x^{3} sowie die Funktionenschar gag_{a} mit ga(x)=a2xg_{a}(x)=a^{2} \cdot x gegeben (aR,a0)(a \in \mathbb{R}, a \neq 0). 1.1 Bestimmen Sie für a=3a=3 den Funktionswert von g3g_{3} an der Stelle x=2x=-2. /2 BE 1.2 Bestimmen Sie für a=1a=-1 den Anstieg von f1f_{-1} an der Stelle x=2x=-2. 13 BE 1.3 Berechnen Sie die Schnittstellen der beiden Scharen miteinander in Abhängigkeit vom Parameter aa und führen Sie, falls notwendig, für aa eine Fallunterscheidung durch. 14 BE 1.4 Betrachten Sie die folgende Rechnung und ziehen Sie eine möglichst konkrete Schlussfolgerung. 12 BE fa(x)=3ax2,0=3ax2x0=0fa(x)=6ax,fa(0)=0fa(x)=6a,fa(0)=6a0\begin{array}{ll} f_{a}^{\prime}(x)=3 a \cdot x^{2}, & 0=3 a \cdot x^{2} \quad \Leftrightarrow \quad x_{0}=0 \\ f_{a}^{\prime \prime}(x)=6 a \cdot x, & f_{a}^{\prime \prime}(0)=0 \\ f_{a}^{\prime \prime \prime}(x)=6 a, & f_{a}^{\prime \prime \prime}(0)=6 a \neq 0 \end{array}
2. Gegeben ist die in R\mathbb{R} definierte Funktionenschar fkdurchfk(x)=kx+cos(x)f_{k} \operatorname{durch} f_{k}(x)=k \cdot x+\cos (x) mit kRk \in \mathbb{R}. 2.1 Die in der Abbildung rechts dargestellten Graphen von fkf_{k} gehören jeweils zu einem der Werte k=0,25;k=0,5k=0,25 ; k=0,5 und k=1k=1 der Funktionsschar fkf_{k}. Ordnen Sie jedem dieser Werte den passenden Graphen zu. 2.2 Zeigen Sie, dass sich die Graphen von fkf_{k} alle im Punkt P(01)P(0 \mid 1) schneiden. 12 BE 2.3 Berechnen Sie den Wert des Terms π2πfk(x)dx\int_{\pi}^{2 \pi} f_{k}(x) d x in Abhängigkeit vom Parameter kk. 13 BE Rückseite beachten!

See Solution

Problem 11638

log79\log _{7} 9

See Solution

Problem 11639

A survey of 2279 adults in a certain large country aged 18 and older conducted by a reputable polling organization found that 421 have donated blood in the past two years. Complete parts (a) through (c) below. Click here to view the standard normal distribution table (page 1). Click here to view the standard normal distribution table (page 2). p^=0.185\hat{p}=0.185 (Round to three decimal places as needed.) (b) Verify that the requirements for constructing a confidence interval about p are satisfied.
The sample \square a simple random sample, the value of p^(1p^)\hat{p}(1-\hat{p}) is \square , which is \square \square less than or equal to 5%5 \% of the \square (Round to three decimal places as needed.) (c) Construct and interpret a 90\% confidence interval for the population proportion of adults in the country who have donated blood in the past two years. Select the correct choice below and fill in any answer boxes within your choice. (Type integers or decimals rounded to three decimal places as needed. Use ascending order.) A. There is a \square \% probability the proportion of adults in the country aged 18 and older who have donated blood in the past two years is between \square and \square . B. We are \square \% confident the proportion of adults in the country aged 18 and older who have donated blood in the

See Solution

Problem 11640

ter 9 Homework Question 5, 9.2.1
Determine whether the samples are independent or dependent. A data set includes the morning and evening temperature for the last 120 days.
Choose the correct answer below. A. The samples are dependent because there is not a natural pairing between the two samples, B. The samples are independent because there is not a natural pairing between the two samples. C. The samples are independent because there is a natural pairing between the two samples. D. The samples are dependent because there is a natural pairing between the two samples.

See Solution

Problem 11641

Which of the following statements are true concerning the mean of the differences between two dependent samples (matched pairs)?
Select all that apply. A. If one has more than 9 matched pairs of sample data, one can consider the sample to be large and there is no need to check for normality. B. The methods used to evaluate the mean of the differences between two dependent variables apply if one has 92 weights of taxpayers from Ohio and 92 weights of taxpayers from Texas. C. The requirement of a simple random sample is satisfied if we have independent pairs of convenience sampling data. D. If one has twenty matched pairs of sample data, there is a loose requirement that the twenty differences appear to be from a normally distributed population. E. If one wants to use a confidence interval to test the claim that μd>0\mu_{d}>0 with a 0.05 significance level, the confidence interval should have a confidence level of 90%90 \%.

See Solution

Problem 11642

Question 17, 9.4.3 HW Score: 35.83%,7.1735.83 \%, 7.17 of 20 points
Given the two samples of commute times (minutes) shown here, which of the following are randomizations of them? Points: 0 of 1 Boston 520 25 30 50  New York 204060\begin{array}{llll}\text { New York } & 20 & 40 \quad 60\end{array}
Choose the correct answer below. A. Boston: 30, 20, 5. New York: 25, 50, 40, 20, 60. B. Boston: 30,20,50,25,530,20,50,25,5 New York 40,20,6040,20,60. C. Boston: 20, 20, 20, 20, 20. New York: 25, 25, 25 D. Boston: 30,20,5030,20,50. New York: 25, 5, 40, 20, 60. E. Boston 50, 5, 25, 25, 30. New York 20, 40, 40, 60

See Solution

Problem 11643

Anwendungsbezogene Kurvendiskussion 2 Die Gesamtkosten KK (in 100,00 EUR) eines Herstellers von Massenartikeln in einem Jahr kann man beschreiben durch die Funktion KK mit K(x)=x38x2+24x+100K(x)=x^{3}-8 x^{2}+24 x+100. Dabei ist xx der Output in 1000Stu¨ck/Jahr1000 \mathrm{Stück/Jahr}. Die Kapazitätsgrenze liegt bei 12000 Stück/Jahr. Diskutieren Sie die Funktion und interpretieren Sie die Ergebnisse.

See Solution

Problem 11644

7. The largest interval in which a solution of the IVP y+(lnt)y=tant,y(π4)=1y^{\prime}+(\ln t) y=\tan t, \quad y\left(\frac{\pi}{4}\right)=1 is certain to exist is (a) (0,π2)\left(0, \frac{\pi}{2}\right) (b) (0,π)(0, \pi) (c) (0,1)(0,1). (d) (1,)(1, \infty)

See Solution

Problem 11645

12. Elefantenbestand
In einem großen afrikanischen Nationalpark wird der Elefantenbestand kontrolliert und geschützt. Dadurch wächst die Population, die zum Zeitpunkt t=0\mathrm{t}=0 bei 2500 Elefanten liegt, mit einer Wachstumsrate, welche durch die Funktion f(t)=0,5te0,25tf(t)=0,5 t \cdot e^{-0,25 t} beschrieben wird. ( t0\mathrm{t} \geq 0 : Zeit in Jahren, f(t)\mathrm{f}(\mathrm{t}) : Zuwachsrate in Tausend/Jahr) a) Ermitteln Sie den Funktionswert von f an der Stelle t = 10. Erläutern Sie das Ergebnis. b) Beschreiben Sie anhand des rechts dargestellten Graphen von f, wie sich die Elefantenpopulation ent- wickelt. c) Wann wächst die Elefantenpopulation am stärksten? d) Weisen Sie nach, dass die Funktion F(t)=2e0,25t(t+4)F(t)=-2 e^{-0,25 t}(t+4) eine Stammfunktion von ff ist. e) Welche Funktion G(t)G(t) beschreibt den Bestand der Elefantenpopulation zum Zeitpunkt tt ? f) Welche Maximalpopulation kann erreicht werden?

See Solution

Problem 11646

Part 6 of 6 Points: 0.67 of 1 Save
The results of a survey taken by a bank in a medium-sized town are shown in the table. The survey asked questions about the investment habits of bank customers. Assuming that no one invests in more than one type of investment, and using the letters in the table, find the number of people in each set. Complete parts (a) through (f) below.
Click the icon to view the survey results. (a) YBY \cap B
The set YBY \cap B has 3 people. (b) MAM \cup A
The set M U A has 52 people. (c) Y(SB)Y \cap(S \cup B)
The set Y(SB)Y \cap(S \cup B) has 7 people. (d) O(SA)O^{\prime} \cup(S \cup A)
The set O(SA)O^{\prime} \cup^{\prime}(S \cup A) has 91 people. (e) (MO)B\left(M^{\prime} \cup O^{\prime}\right) \cap B
The set (MO)B\left(M^{\prime} \cup O^{\prime}\right) \cap B has 28 people. (f) Describe the set Y(SB)Y \cap(S \cup B) in words. A. The set is all those who invest in stocks and bonds or are age 18-29. B. The set is all those who invest in stocks or bonds or are age 18-29.
Survey Results C. The set is all those who invest in stocks and bonds and are age 18-29. D. The set is all those who invest in stocks or bonds and are age 18-29. \begin{tabular}{|lcccc|} \hline Age & Stocks (S)(\mathbf{S}) & \begin{tabular}{c} Bonds \\ (B) \end{tabular} & \begin{tabular}{c} Savings \\ Accounts \\ (( A) \end{tabular} & Totals \\ \hline 1829(Y)18-29(\mathrm{Y}) & 4 & 3 & 14 & 21 \\ \hline 3049(M)30-49(\mathrm{M}) & 11 & 4 & 12 & 27 \\ \hline 50 or over (O)(\mathrm{O}) & 32 & 21 & 11 & 64 \\ \hline Totals & 47 & 28 & 37 & 112 \\ \hline \end{tabular} Print Done

See Solution

Problem 11647

Какая операция будет выполняться первой в выражении KK&CK \vee K \& C ?

See Solution

Problem 11648

mylab.pearson.com/Student/PlayerHomework.aspx?homeworkId=685494365\&questionld=1\&flushed=false\&cld=8051021\&back=DoAssignments.aspx?view=h... Finish update ne MATH 1414 College Algebra - Oct. 15 through Dec. 13, 2024 Anthony Reyes Homework: 10.1 Homework Question 2, 10.1.3 HW Score: 6.25\%, 1 of 16 points Save estion list
Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Graph the ellipse and locate the foci. x225+y264=1\frac{x^{2}}{25}+\frac{y^{2}}{64}=1
Choose the correct graph below. A. B. c. D.

See Solution

Problem 11649

minules.
1. Peter. Tom, and Carl simultancously shoot at a target. Peter hits the target with a probability of 1/21 / 2. Tho with a probability of 2/32 / 3, and Carl with a probability of 3/43 / 4. a) Assume that only one of them hit the target. What is the probability that it was Carl? b) What is the most likely number of hits on the larget? Determine the expected vilue of the uumber hits.

See Solution

Problem 11650

(40) صحة اعتّاد صاحب المصنع من عدمه عند مستوى الدلالة الإجابة:

See Solution

Problem 11651

Find the equation of the axis of symmetry of the function y=2x27x+5y=2 x^{2}-7 x+5

See Solution

Problem 11652

INDEPENDENT Use the eliminatio 1 3xy=92xy=7\begin{array}{l} 3 x-y=9 \\ 2 x-y=7 \end{array}

See Solution

Problem 11653

EXERCICE 2 (04 points) Un jeune agriculteur décide de pratiquer de la culture sous serre dans son champ. A cet effet, il choisit dans son plan de représentation un repère orthonormal (O;u,v)(O ; \vec{u}, \vec{v}). Il place dans ce repère deux points AA et BB dont les affixes respectives zAz_{A} et zBz_{B} sont des racines du polynôme PP défini par: P(z)=2z33(1+i)z2+4iz+1i, ouˋ zC.P(z)=2 z^{3}-3(1+i) z^{2}+4 i z+1-i, \text { où } z \in C .
Son objectif est de pratiquer sa culture sous serre dans l'ensemble ( EE ) des points MM de son plan de représentation tels que MAundefined+MBundefined+2MOundefined2\|\overrightarrow{M A}+\overrightarrow{M B}+2 \overrightarrow{M O}\| \leq 2, qui contient un point du segment [AB][A B]. 1) Vérifier que 1 et ii sont des racines de PP. 2) Déterminer le polynôme gg tel que P(z)=(z1)(zi)g(z)P(z)=(z-1)(z-i) g(z). 3) Résoudre dans C\mathbb{C} l'équation P(z)=0P(z)=0. (0,5 pt) (0,5 pt) (0,5 pt) 4) On pose zA=1,zB=iz_{A}=1, z_{B}=i et zC=12+12iz_{C}=\frac{1}{2}+\frac{1}{2} i. a) Placer les points A,BA, B et CC d'affixes respectives zA,zBz_{A}, z_{B} et zCz_{C} dans le repère orthonormal (O;u,v)(O ; \vec{u}, \vec{v}) en choisissant comme unite graphique 4 cm . ( 0,75pt0,75 \mathrm{pt} ) b) Démontrer que CC est le milieu de [AB][A B], puis que CC appartient à l'ensemble (E)(E)., ( 0,5pt0,5 \mathrm{pt} ) c) Déterminer l'affixe zGz_{G} du point GG barycentre du système {(A,1);(B,1);(0,2)}\{(A, 1) ;(B, 1) ;(0,2)\}, puis placer GG. ( 0,5pt0,5 \mathrm{pt} ) 5) Déterminer puis construire l'ensemble ( EE ) des points MM du plan tels que MAundefined+MBundefined+2MOundefined2\|\overrightarrow{M A}+\overrightarrow{M B}+2 \overrightarrow{M O}\| \leq 2 ( 0,5pt0,5 \mathrm{pt} ) 6) Le jeune agriculteur atteindra-t-il son objectif? ( 0,25pt0,25 \mathrm{pt} )

See Solution

Problem 11654

2. Gamze ile Gizem sayı tahmini oyununu oynuyorlar. Oyuna göre bir kişi aklından aşağıdaki şartları sağlayan bir sayı tutuyor. Oyuna Gamze başııyor ve aklından tuttuğu sayı ile ilgili aşağıdaki ipuçlarııı veriyor. >500>500 ile 800 arasında üç basamaklı bir sayıdır. > Onlar basmağı 6'dan büyüktür. > Birler basamağındaki rakam tektir. Buna göre Gizem'in bu sayıyı ilk tahminde bulma olasılığı kaçtır? A) 125\frac{1}{25} B) 135\frac{1}{35} C) 145\frac{1}{45} D) 155\frac{1}{55}

See Solution

Problem 11655

16. The Euler differential equation x2y+5xy+3y=0,y(1)=1,y(1)=0x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0, \quad y(1)=1, \quad y^{\prime}(1)=0 has a solution (a) y(t)=12x3+32x1y(t)=-\frac{1}{2} x^{-3}+\frac{3}{2} x^{-1} (b) y(t)=x1lnxy(t)=x^{-1} \ln x (c) y(t)=x3(1+2lnx)y(t)=x^{-3}(1+2 \ln x) (d) y(t)=x3+2lnxy(t)=x^{-3}+2 \ln x

See Solution

Problem 11656

Aufgabe 1: Handelt es sich um eine Bernoulli-Kette? Geben Sie gegebenenfalls ihre Länge nn und die Trefferwahrscheinlichkeit pp an. a) Eine ideale Münze wird zehnmal geworfen und es wird jedes Mal notiert, ob „Zahl" erscheint. b) Eine "Münze" aus Knetmasse wird zehnmal geworfen und es wird jedes Mal notiert, ob „Zahl" erscheint. c) Ein idealer Würfel wird siebenmal geworfen und es wird jedes Mal die Augenzahl notiert. d) Ein idealer Würfel wird siebenmal geworfen und es wird jedes Mal notiert, ob eine Drei erscheint.
Aufgabe 2: Das abgebildete Glücksrad wird dreimal gedreht. a) Begründe, dass es sich dabei um eine Bernoullie-Kette handelt und gib die Länge nn sowie die Trefferwahrscheinlichkeit pp an. b) Gib alle Ergebnisse an, die zu den folgenden Ereignissen gehören (in der Form bgb usw.). Berechne außerdem die Wahrscheinlichkeit dieser Ereignisse. A: dreimal blau B: zuerst blau, dann zwei mal gelb C: genau ein mal blau
Aufgabe 3: Eine verbeulte Münze wird vier mal geworfen. a) Begründe, dass es sich dabei um eine Bernoullie-Kette handelt und gib die Länge nn sowie die Trefferwahrscheinlichkeit pp an. b) Berechne die Wahrscheinlichkeit der folgenden Ereignisse.
A: Es fällt einmal Zahl. B: Es fällt dreimal Zahl. C: Es fällt zweimal Zahl.

See Solution

Problem 11657

Find the 1st 1^{\text {st }} and 2nd 2^{\text {nd }} derivative of y with respect to x from the given parametric equations a. x=ln(1+e2t1e2t),y=arctan(2t)\quad x=\ln \left(\frac{1+e^{-2 t}}{1-e^{-2 t}}\right), y=\arctan (2 t)

See Solution

Problem 11658

II. Write the place value of the circled digits. a. 6.56 b. 21 . (2) 01 c. 188.1 6) 3 e. 130 . (9) 25

See Solution

Problem 11659

Wrice the atcle vatue of the circled digits - E5 (2) 21.291 c 188.163 d. 61.112 =130.925=130.925

See Solution

Problem 11660

In Exercises 1-4, find the domain of the function ff. Use limits to describe the behavior of ff at value(s) of xx not in its domain.
1. f(x)=1x+3f(x)=\frac{1}{x+3}
2. f(x)=3x1f(x)=\frac{-3}{x-1}
3. f(x)=1x24f(x)=\frac{-1}{x^{2}-4}
4. f(x)=2x21f(x)=\frac{2}{x^{2}-1}

See Solution

Problem 11661

Find the domain of the function f(x)=1x+x1 f(x) = \sqrt{1-x} + \sqrt{x-1} .

See Solution

Problem 11662

Q1: For some event AA with P(A)=0.1P(A)=0.1 then P(AΩ)+P(ϕΩ)+P(ΩA)=P(A \mid \Omega)+P(\phi \mid \Omega)+P(\Omega \mid A)= A) 0.1 B) 1.2 C) 2.3 D) 1.1 E) None
Q2: Let XX be a random variable with E(X)=1E(X)=1 and E(X10+X)=2E\left(X^{10}+X\right)=2 Then E(X10)=E\left(X^{10}\right)= A) 0 B) 1 C) 2 D) 3 E) None
Q3: For x>0x>0 we have u(x)+3δ(y)=u(x)+3 \delta(y)= A) 1 B) 2 C) 3 D) 4 E) None
Q4: For RXY={(0,0),(1,1)}R_{X Y}=\{(0,0),(1,1)\}, if f(0,0)=0.2f(0,0)=0.2 and f(1,1)=0.8f(1,1)=0.8. Then E(XY)=E(X Y)= A) 1 B) 0.2 C) 0.8 D) 0.7 E) None
Q5: For some disjoint events A,BA, B with P(A)=0.2P(A)=0.2 and P(B)=0.4P(B)=0.4, we have P(AB)=P(A \cup B)= A) 0.2 B) 0.3 C) 0.4 D) 0.6 E) None
Q6: If P(A)=0.2P(A)=0.2 and P(AˉB)=P(BˉA)P(\bar{A} \cap B)=P(\bar{B} \cap A), then P(B)=P(B)= A) 0.1 B) 0.2 C) 0.4 D) 0.6 E) None
Q7: x3δ(x+1)dx=\int_{-\infty}^{\infty} x^{3} \delta(x+1) d x= A) -1 B) 8 C) -8 D) 1 E) None

See Solution

Problem 11663

(12) Let y1y_{1} and y2y_{2} be two solutions of the DE t2yt(t+1)y+y=0,t>0.t^{2} y^{\prime \prime}-t(t+1) y^{\prime}+y=0, \quad t>0 .
If W(y1,y2)(2)=2e2W\left(y_{1}, y_{2}\right)(2)=2 \mathrm{e}^{2}, then W(y1,y2)(1)=W\left(y_{1}, y_{2}\right)(-1)= (a) -e (b) e1\mathrm{e}^{-1} (c) e2e^{2} (d) e1-\mathrm{e}^{-1} (e) ee

See Solution

Problem 11664

1. Let an=n2+18n56a_{n}=-n^{2}+18 n-56 where nNn \in \mathbb{N}. What is the smallest n0Nn_{0} \in \mathbb{N} such that ana_{n} is decreasing for all nn0n \geqslant n_{0}.
ANS:

See Solution

Problem 11665

11 Pada gambar berikut titik P menunjukkan kawat berarus listrik yang arahnya keluar bidang gambar. 2 3 5 Kin 4 Atas Kanan Bawah Induksi magnet yang arahnya ke atas pada gambar adalah nomor.... A. 1 B. ABCD C. 2 12345 D. 4 E. 5

See Solution

Problem 11666

Identify the coefficient and degree of the term: 10x4b4-10 x^{4} b^{4} The coefficient is \square and the degree is \square Question Help: Video Written Example

See Solution

Problem 11667

Leah Hernandez-Matute 8 of 12 Next
Your Favorite Mistake It takes 20 tomato slices to make 2 of Ivan's pizzas.
Two students made a mistake when making 6 pizzas.
Select your favorite mistake.
Ivan (120 slices) Jada (24 slices)
What advice would you give to Ivan?
Jada: 24 slices

See Solution

Problem 11668

Jack is a banker who enjoys having fun with friends after work. The team will usually meet at a beer bar joint to drink and eat kebab. Jack will usually eat 5 sticks of pork kebab and drink three jugs ( 750 ml is volume of the jug) of beer. His caloric needs for the day is 1800 Calories as a young man.
Analysis of the kebab shows each contains 5 grams fat.
Calculate the \% fat contribution of the fat from the kebab to his daly energy needs.
If 100 g of beer contains 43 Cal , and assuming a jug of 750 mls is equivalent to 750 g . Calculate total energy he consumed while with friends.

See Solution

Problem 11669

Find Unit Rates
1. Lisa takes 27 minutes to run 3 miles. A. Write Lisa's unit rate in minutes per mile. B. Write Lisa's unit rate in miles per minute. C. At this rate, how many miles will Lisa have run after 45 minutes? D. At this rate, how long would it take Lisa to run 7 miles?
2. A 5 -pound bag of carrots costs $2.69\$ 2.69, and a 2 -pound bag costs $1.89\$ 1.89. A. Which bag provides a greater weight per dollar spent? B. How much does 10 pounds of carrots cost when purchasing 5-pound bags? C. How much does 10 pounds of carrots cost when purchasing 2-pound bags? D. What is the difference in price between each option when purchasing 10 pounds of carrots?

See Solution

Problem 11670

Given that Alice and Bob are using the Data Encryption Standard (DES), and the data entered into the substitution boxes (S-boxes) is ( 9 F C6 5B 05 AD 38) 16{ }_{16}. What is the output of the S-boxes (in hexadecimal)? Explain your answer by highlighting the resulting values in the S-boxes given below. \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3) & 4 & 5 & 66 \mid & 7 & 8 & 9 & A & B & c & D & E & F \\ \hline 0 & E & 4 & D & 1 & 2 & F & B & 8 & 3 & A & 6 & C & 5 & 9 & 0 & 7 \\ \hline 1 & 0 & F & 7 & 4 & E & 2 & D & 1 & A & 6 & c & B & 9 & 5 & 3 & 8 \\ \hline 2 & 4 & 1 & E & 8 & D & 6 & 2 & B & F & C & 9 & 7 & 3 & A & 5 & 0 \\ \hline (3) & F & C & 8 & 2 & 4 & 9 & 1 & 7 & 5 & B & 3 & E & A & 0 & 6 & \\ \hline \end{tabular}
S5 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & ( & & 2 & 3 & 4 & 5 & 6 & 7 & & 9 & A & B & C & D & E & F & \\ \hline 0 & 2 & C & 4 & 1 & 7 & A & B & 6 & 8 & 5 & 3 & F & D & 0 & E & 9 & \\ \hline (1) & E & B & 2 & C & 4 & 7 & D & 1 & 5 & 0 & F & A & 3 & 9 & 8 & 6 & \\ \hline 2 & 4 & 2 & 1 & B & A & D & 7 & 8 & F & 9 & C & 5 & 6 & 3 & 0 & E & \\ \hline 3 & B & 8 & c & 7 & 1 & E & 2 & D & 6 & F & 0 & 9 & A & 4 & 5 & 3 & \\ \hline \end{tabular} s2 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & AA & BB & CC & DD & (E)(E) & FF \\ \hline 0 & F & 1 & 8 & E & 6 & B & 3 & 4 & 9 & 7 & 2 & D & C & 0 & 5 & A \\ \hline 1 & 3 & D & 4 & 7 & F & 2 & 8 & E & C & 0 & 1 & A & 6 & 9 & B & 5 \\ \hline (2) & 0 & E & 7 & B & A & 4 & D & 1 & 5 & 8 & C & 6 & 9 & 3 & 2 & F \\ \hline 3 & D & 8 & A & 1 & 3 & F & 4 & 2 & B & 6 & 7 & C & 0 & 5 & E & 9 \\ \hline \end{tabular}
S6 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A) & B & C & (1) & E & F & \\ \hline (c) & C & 1 & A & F & 9 & 2 & 6 & 8 & 0 & D & 3 & 4 & E & 7 & 5 & B & \\ \hline 1 & A & F & 4 & 2 & 7 & c & 9 & 5 & 6 & 1 & D & E & 0 & B & 3 & 8 & \\ \hline 2 & 9 & E & F & 5 & 2 & 8 & C & 3 & 7 & 0 & 4 & A & 1 & D & B & 6 & \\ \hline 3 & 4 & 3 & 2 & c & 9 & 5 & F & A & B & E & 1 & 77 \mid & 6 & 0 & 8 & D & \\ \hline \end{tabular}
53 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & A & A & B & (c) & D & E & & F \\ \hline 0 & A & 0 & 9 & E & 6 & 3 & F & 5 & 1 & D & c & C 7 & 7 & BB & 4 & 2 & & 8 \\ \hline (1) & D & 7 & 0 & 9 & 3 & 4 & 6 & A & 2 & 8 & 5 & 5 & E & C. & B & F & & 1 \\ \hline 2 & D & 6 & 4 & 9 & 8 & F & 3 & 0 & B & 1 & 2 & & C & 5 & A & E & & 7 \\ \hline 3 & 1 & A & D & 0 & 6 & 9 & 8 & 7 & 4 & F & E & A & 3 & B & 5 & 2 & & c \\ \hline \end{tabular}
57 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (4) & B & C & D & E & F & \\ \hline 0 & 4 & B & 2 & E & F & 0 & 8 & D & 3 & C & 9 & 7 & 5 & A & 6 & & \\ \hline 1 & D & 0 & B & 7 & 4 & 9 & 1 & A & E & 3 & 5 & C & 2 & F & 8 & 6 & 6 \\ \hline (2) & 1 & 4 & B & D & C & 3 & 7 & E & A & F & 6 & 8 & 0 & 5 & 9 & 2 & 2 \\ \hline 3 & 6 & B & D & 8 & 1 & 4 & A & 7 & 9 & 5 & 0 & F & E & 2 & 3 & & c \\ \hline \end{tabular} S4 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & AA & B & C & D & E & F \\ \hline 0 & 7 & D & E & 3 & 0 & 6 & 9 & A & 1 & 2 & 8 & 5 & B & C & 4 & F \\ \hline C & D & 8 & B & 5 & 6 & F & 0 & 3 & 4 & 7 & 2 & C & 1 & A & E & 9 \\ \hline 2 & A & 6 & 9 & 0 & C & B & 7 & D & F & 1 & 3 & E & 5 & 2 & 8 & 4 \\ \hline 3 & 3 & F & 0 & 6 & A & 1 & D & 8 & 9 & 4 & 5 & B & C & 7 & 2 & E \\ \hline \end{tabular} \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & (c) & D & E & F \\ \hline 0 & D & 2 & 8 & 4 & 6 & F & B & 1 & A & 9 & 3 & E & 5 & 0 & C & 7 \\ \hline 1 & 1 & F & D & 8 & A & 3 & 7 & 4 & C & 5 & 6 & B & 0 & E & 9 & 2 \\ \hline (2) & 7 & B & 4 & 1 & 9 & C & E & 2 & 0 & 6 & A & D & F & 3 & 5 & 8 \\ \hline 3 & 2 & 1 & E & 7 & 4 & A & 8 & D & F & c & 9 & 0 & 3 & 5 & 6 & \\ \hline \end{tabular}

See Solution

Problem 11671

Verify the conclusion of Green's Theorem by evaluating both sides of each of the two forms of Green's Theorem for the field F=6xi2yjF=6 x i-2 y j. Take the domains of integration in each case to be the disk R:x2+y2a2R: x^{2}+y^{2} \leq a^{2} and its bounding circle CC : r=(acost)i+(asint)j,0t2πr=(a \cos t) i+(a \sin t) j, 0 \leq t \leq 2 \pi. i Click here for the two forms of Green's Theorem.
The flux is \square (Type an exact answer, using π\pi as needed.)

See Solution

Problem 11672

Read a reporter's notes, taken at a press conference held by the Georgia Department of Economic Development, and answer the question. \begin{tabular}{|c|c|} \hline & In 2018, 6\%\% of Georgla's state Gross Domestic Product \\ \hline & came from $40.6\$ 40.6 billion of exported goods. \\ \hline & In 1992, 9.8\% of all jobs in Ceorgia were tied to trade; by \\ \hline & 2018. 20.2%20.2 \% of all jobs in the state were tied to trade. \\ \hline & \$36.9 bilion of manufactured products exported trom \\ \hline & Georgla supported atmost 170,000 pous in 2016. \\ \hline \end{tabular}
What would be an appropriate title for the journalist's article covering the press conference? A. Georgia Hurts its Economy by Sending Jobs and Industries Overseas B. Percentage of Georgia's Economy Tied to Trade is Too Small to Measure C. Exports Bring Jobs and Sizable Growth to Georgia's State Economy D. Georgia is Too Reliant on Trade to Drive State's Economic Growth

See Solution

Problem 11673

Aufgabe 55 \quad Bilden Sie hier auch f(x)f^{\prime \prime}(x) f(x)=4x2(x2+1)3f(x)=\frac{4 x^{2}}{\left(x^{2}+1\right)^{3}}

See Solution

Problem 11674

Which fraction is equivalent to 13\frac{1}{3} ? 12\frac{1}{2} 39\frac{3}{9} 25\frac{2}{5} 38\frac{3}{8}
Submit

See Solution

Problem 11675

Graph each equation. 5) y=x22x3y=x^{2}-2 x-3
Identify the min/max\min / \max value of each. Th

See Solution

Problem 11676

Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь анхны тоон олонлогт багтах вэ? 2,7,8,1,13,15,30,25,542,7,8,1,13,15,30,25,54

See Solution

Problem 11677

1. y>xy>x
4. x+8y-x+8 \leq y
2. yxy \geq x
5. y<10x200y<10 x-200
3. y<8y<-8
6. 2x+3y>602 x+3 y>60

See Solution

Problem 11678

Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь зохиомол тоон олонлогт багтах вэ? 3,23,12,4,100,54,7,7-3,2 \sqrt{3}, 12,4,100,54,-7,7

See Solution

Problem 11679

Lesson 4-1 Rational Numbers Write each fraction as a decimal. Determine if the decimal is a terminating decimal. (Examples 1 and 2)
1. 78\frac{7}{8}
2. 25\frac{2}{5}
3. 45-\frac{4}{5}

See Solution

Problem 11680

Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь эерэг тоон олонлотт багтах вэ? 5,8,8,7,18,54,55,8,-8,7,18,-54,-5

See Solution

Problem 11681

Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь анхны тоон олонлогт багтах вэ? 13,7,13,7,4,8-13,7,13,-7,4,8

See Solution

Problem 11682

Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь зохиомол тоон олонлогт багтах вэ?\text{Ерөнхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэнэ. Тэгвэл дараах зүйлүүдээс аль нь зохиомол тоон олонлогт багтах вэ?} 18,72,81,13,7,64,7,1718, 72, 81, 13, 7, 64, -7, 17 зохиомол тоо анхны тоо гэж юу вэ\text{зохиомол тоо анхны тоо гэж юу вэ} аль нь зохиомол тоо вэ\text{аль нь зохиомол тоо вэ}

See Solution

Problem 11683

Graph the given function. State the period, amplitude, phase shift, and vertical shift of the function. y=sin(x+π6)y=-\sin \left(x+\frac{\pi}{6}\right)

See Solution

Problem 11684

Дараалж буруу бодсон тоо
Еренхий шинж чанартай, ялгаатай юмсын цуглуулгыг олонлог гэня. Тэгвэл дараах зуитлуудзсс аль нь бухэл тоОн олонлогт 6artax B9? 2.3,4,87,2.8,2,82.3,-4,8 \sqrt{7}, 2.8,2,8

See Solution

Problem 11685

Математикт aa нь AA олонлогийн элемент мөн бол aAa \in A, элемент биш бол aAa \notin A гэж тэмдэглэх ба үүнийг aa элемент A олонлогт харьяалагдана (харьяалагдахгүй ) гэж уншина. AA олонлог нь эерэг тоон олонлог бол -8 гэсэн тоо AA олонлогт харьяалагдах уу? харьяалагдахгүй юу?

See Solution

Problem 11686

Математикт aa нь AA олонлогийн элемент мөн бол aAa \in A, элемент биш бол aAa \notin A гэж тэмдэглэх ба үүнийг аа элемент А олонлогт харьяалагдана ( харьяалагдахгүй ) гэж уншина. AA олонлог нь сөрөг тоон олонлог бол 45 гэсэн тоо AA олонлогт харьяалагдах уу? харьяалагдахгүй юу?

See Solution

Problem 11687

D My IXL Learning Assessment Analytics Jakayla Your teacher (Dodgen) has started a Group Jaml Join the Jam Eighth grade > JJ.5 Make predictions 38C Video (b) Questions answered
A band played an encore at 2 of its last 4 shows. Considering this data, how many of the band's next 14 shows would you expect to have an encore? \square shows Submit 11 Time elapsed 00 04 07 HIK MIN sec SmartScore out of 100 34 Work it out Not feeling ready yet? These can help:

See Solution

Problem 11688

Математикт aa нь AA олонлогийн элемент мөн бол aAa \in A, элемент биш бол aAa \notin A гэж тэмдэглэх ба үүнийг аа элемент А олонлогт харьяалагдана ( харьяалагдахгүй ) гэж уншина. AA олонлог нь тэгш тоон олонлог бол 14 гэсэн тоо AA олонлогт харьяалагдах уу? харьяалагдахгүй юу?

See Solution

Problem 11689

Математикт аа нь AA олонлогийн элемент мөн бол aAa \in A, элемент биш бол aAa \notin A гэж тэмдэглэх ба үүнийг аа элемент А олонлогт харьяалагдана ( харьяалагдахгүй ) гэж уншина. AA олонлог нь натурал тоон олонлог бол 232 \sqrt{3} гэсэн тоо AA олонлогт харьяалагдах уу? харьяалагдахгүй юу?

See Solution

Problem 11690

Which sequence of transformations produces an image that is not congruent to the original figure? A. A translation of 6 units to the left followed by a reflection across the xx-axis B. A reflection across the xx-axis followed by a rotation of 180180^{\circ} counterclockwise C. A rotation of 9090^{\circ} clockwise followed by a translation of 4 units to the left D. A translation of 4 units to the left followed by a dilation of a factor of 3

See Solution

Problem 11691

Which of the following is true about the expression c5+(9c2)+40c+7d7e35c3+4d?c^{5}+\left(-9 c^{2}\right)+40 c+7 d^{7} e^{3}-5 c^{3}+4 d ? The coefficient of the third term is cc. The coefficient of the fourth term is 7. The coefficient of the first term is 0 . There are no negative coefficients.

See Solution

Problem 11692

Determine algebraically whether the given function is even, odd, or neither. f(x)=2x+5xf(x)=2 x+|-5 x|
Choose the correct answer. Even Neither

See Solution

Problem 11693

Parallelogram ABCDA B C D has vertex coordinates A(0,1),B(1,3),C(4,3)A(0,1), B(1,3), C(4,3), and D(3D(3, 1). It is translated 2 units to the right and 3 units down and then rotated 180180^{\circ} clockwise around the origin. What are the coordinates of AA ? A. (2,2)(-2,2) B. (4,3)(-4,-3) C. (3,4)(-3,-4) D. (5,2)(5,2)

See Solution

Problem 11694

The given graph describes the value of a computer over time. Select the TWO true statements below. The relationship between value and time is linear The initial value of the computer is $500\$ 500 By the time the computer is 4 years old, its value has decreased by $4000\$ 4000
The rate of depreciation is greater when the computer is 2 years old than when it is 5 years old

See Solution

Problem 11695

(3,ln(5)33)\left(3, \ln (5)^{3} \cdot 3\right)
10. The graph of y=f(x) y = f(x) shown above, is the graph of a logarithmic function. Which equation below represents the inverse function? \begin{itemize} \item (A) f1(x)=ex+32 f^{-1}(x) = e^{x+3} - 2 \item (B) f1(x)=3ex2 f^{-1}(x) = 3e^{x} - 2 \item (C) f1(x)=ex+23 f^{-1}(x) = e^{x+2} - 3 \item (D) f1(x)=ex3+2 f^{-1}(x) = e^{x-3} + 2 \end{itemize} The asymptote is 2-2.

See Solution

Problem 11696

Which expression has the greatest value? 15(5352)2\frac{1}{5}\left(\frac{5^{3}}{5^{2}}\right)^{2} 58(52)4\frac{5^{8}}{\left(5^{2}\right)^{4}} (5354)3\left(\frac{5^{3}}{5^{4}}\right)^{3} (52)354\frac{\left(5^{2}\right)^{3}}{5^{4}} sUbmit all

See Solution

Problem 11697

Question 15 of 40 What are the center and radius of the circle defined by the equation x2+y26x+10y+25=0x^{2}+y^{2}-6 x+10 y+25=0 ? A. Center (3,5)(-3,5); radius 9 B. Center (3,5)(3,-5); radius 3 C. Center (3,5)(3,-5); radius 9 D. Center (3,5)(-3,5); radius 3 SUBMIT

See Solution

Problem 11698

Jill is factoring the expression 13xy52y13 x y-52 y. Her work is shown below.
Factors of 13xy:1,13,x,y13 x y: 1,13, x, y Factors of 52y:1,2,26,52,y52 y: 1,2,26,52, y GCF: y Factored expression: y(13x52)y(13 x-52)
Which best describes the accuracy of Jill's solution? Jill's solution is accurate. Jill omitted a factor pair, which affected the GCF and factored expression. Jill made an error when determining the GCF from her list of factors. Jill made an error when writing the factored expression.

See Solution

Problem 11699

What shape is generated when rectangle ABCDA B C D is rotated around the vertical line through AA and DD ? A. Pyramid B. Prism C. Cylinder D. Cone

See Solution

Problem 11700

Linda uses the simple interest formula to calculate the interest fee on her recent loan. Her interest rate is 5%5 \%. What value will Linda use for T\boldsymbol{\mathcal { T }}, interest rate, in her calculation? 0.05 0.005 0.5 5.0

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord