Math  /  Trigonometry

Question11. Prove each identity. a) cos2x+1sin2x=cotx\frac{\cos 2 x+1}{\sin 2 x}=\cot x h) csc2x+cot2x=cotx\csc 2 x+\cot 2 x=\cot x b) sin2x1cos2x=cotx\frac{\sin 2 x}{1-\cos 2 x}=\cot x i) 2tanx1+tan2x=sin2x\frac{2 \tan x}{1+\tan ^{2} x}=\sin 2 x c) (sinx+cosx)2=1+sin2x(\sin x+\cos x)^{2}=1+\sin 2 x d) cos4θsin4θ=cos2θ\cos ^{4} \theta-\sin ^{4} \theta=\cos 2 \theta j) sec2t=csctcsct2sint\sec 2 t=\frac{\csc t}{\csc t-2 \sin t} e) cotθtanθ=2cot2θ\cot \theta-\tan \theta=2 \cot 2 \theta f) cotθ+tanθ=2csc2θ\cot \theta+\tan \theta=2 \csc 2 \theta k) csc2θ=12(secθ)(cscθ)\csc 2 \theta=\frac{1}{2}(\sec \theta)(\csc \theta) g) 1+tanx1tanx=tan(x+π4)\frac{1+\tan x}{1-\tan x}=\tan \left(x+\frac{\pi}{4}\right) 1) sect=sin2tsintcos2tcost\sec t=\frac{\sin 2 t}{\sin t}-\frac{\cos 2 t}{\cos t}

Studdy Solution
2 To prove sect=sin2tsintcos2tcost\sec t = \frac{\sin 2t}{\sin t} - \frac{\cos 2t}{\cos t}, use the identities: - sect=1cost\sec t = \frac{1}{\cos t} - sin2t=2sintcost\sin 2t = 2\sin t \cos t - cos2t=2cos2t1\cos 2t = 2\cos^2 t - 1
Express the right-hand side:
sin2tsintcos2tcost=2sintcostsint2cos2t1cost\frac{\sin 2t}{\sin t} - \frac{\cos 2t}{\cos t} = \frac{2\sin t \cos t}{\sin t} - \frac{2\cos^2 t - 1}{\cos t}
Simplify each term:
=2cost(2cost1cost)= 2\cos t - \left(2\cos t - \frac{1}{\cos t}\right)
Combine the terms:
=2cost2cost+1cost=1cost=sect= 2\cos t - 2\cos t + \frac{1}{\cos t} = \frac{1}{\cos t} = \sec t
All identities have been proven.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord