Studdy Solution
STEP 1
1. We will use trigonometric identities to prove each given identity.
2. Familiarity with basic trigonometric identities such as double angle formulas, Pythagorean identities, and reciprocal identities is assumed.
STEP 2
1. Prove identity a) sin2xcos2x+1=cotx
2. Prove identity h) csc2x+cot2x=cotx
3. Prove identity b) 1−cos2xsin2x=cotx
4. Prove identity i) 1+tan2x2tanx=sin2x
5. Prove identity c) (sinx+cosx)2=1+sin2x
6. Prove identity d) cos4θ−sin4θ=cos2θ
7. Prove identity j) sec2t=csct−2sintcsct
8. Prove identity e) cotθ−tanθ=2cot2θ
9. Prove identity f) cotθ+tanθ=2csc2θ
10. Prove identity k) csc2θ=21(secθ)(cscθ)
11. Prove identity g) 1−tanx1+tanx=tan(x+4π)
12. Prove identity l) sect=sintsin2t−costcos2t
STEP 3
To prove sin2xcos2x+1=cotx, start by using the double angle identities:
- cos2x=2cos2x−1
- sin2x=2sinxcosx
Substitute these into the left-hand side:
sin2xcos2x+1=2sinxcosx(2cos2x−1)+1=2sinxcosx2cos2x
Simplify the expression:
=sinxcosx=cotx
STEP 4
To prove csc2x+cot2x=cotx, use the identities:
- csc2x=sin2x1
- cot2x=sin2xcos2x
- sin2x=2sinxcosx
- cos2x=2cos2x−1
Substitute these into the left-hand side:
csc2x+cot2x=sin2x1+sin2xcos2x=sin2x1+cos2x
Using the identity cos2x=1−2sin2x, we get:
=2sinxcosx1+(1−2sin2x)=2sinxcosx2cos2x
Simplify:
=sinxcosx=cotx
STEP 5
To prove 1−cos2xsin2x=cotx, use the identities:
- sin2x=2sinxcosx
- cos2x=2cos2x−1
Substitute these into the left-hand side:
1−cos2xsin2x=1−(2cos2x−1)2sinxcosx
Simplify the denominator:
=2sin2x2sinxcosx=sinxcosx=cotx
STEP 6
To prove 1+tan2x2tanx=sin2x, use the identity:
- sin2x=1+tan2x2tanx
This identity directly matches the left-hand side, thus proving the identity.
STEP 7
To prove (sinx+cosx)2=1+sin2x, expand the left-hand side:
(sinx+cosx)2=sin2x+2sinxcosx+cos2x
Using the Pythagorean identity sin2x+cos2x=1, we have:
=1+2sinxcosx
Recognize that 2sinxcosx=sin2x, so:
=1+sin2x
STEP 8
To prove cos4θ−sin4θ=cos2θ, use the identity:
cos4θ−sin4θ=(cos2θ+sin2θ)(cos2θ−sin2θ)
Since cos2θ+sin2θ=1, we have:
=cos2θ−sin2θ
Recognize that cos2θ−sin2θ=cos2θ, so:
=cos2θ
STEP 9
To prove sec2t=csct−2sintcsct, use the identities:
- sec2t=cos2t1
- csct=sint1
Express the right-hand side:
csct−2sintcsct=sint1−2sintsint1
Simplify the denominator:
=sint−2sin2t1
Recognize that sint−2sin2t=cos2t, so:
=cos2t1=sec2t
STEP 10
To prove cotθ−tanθ=2cot2θ, use the identities:
- cotθ=sinθcosθ
- tanθ=cosθsinθ
- cot2θ=sin2θcos2θ
Express the left-hand side:
cotθ−tanθ=sinθcosθ−cosθsinθ
Combine the fractions:
=sinθcosθcos2θ−sin2θ
Recognize that cos2θ−sin2θ=cos2θ and sinθcosθ=21sin2θ, so:
=21sin2θcos2θ=2sin2θcos2θ=2cot2θ
STEP 11
To prove cotθ+tanθ=2csc2θ, use the identities:
- cotθ=sinθcosθ
- tanθ=cosθsinθ
- csc2θ=sin2θ1
Express the left-hand side:
cotθ+tanθ=sinθcosθ+cosθsinθ
Combine the fractions:
=sinθcosθcos2θ+sin2θ
Using the identity cos2θ+sin2θ=1, we have:
=sinθcosθ1
Recognize that sinθcosθ=21sin2θ, so:
=sin2θ2=2csc2θ
STEP 12
0
To prove csc2θ=21(secθ)(cscθ), use the identities:
- csc2θ=sin2θ1
- secθ=cosθ1
- cscθ=sinθ1
Express the right-hand side:
21(secθ)(cscθ)=21(cosθ1)(sinθ1)
Simplify:
=2cosθsinθ1
Recognize that 2cosθsinθ=sin2θ, so:
=sin2θ1=csc2θ
STEP 13
1
To prove 1−tanx1+tanx=tan(x+4π), use the identity:
- tan(x+4π)=1−tanxtanx+1
This identity directly matches the left-hand side, thus proving the identity.
STEP 14
2
To prove sect=sintsin2t−costcos2t, use the identities:
- sect=cost1
- sin2t=2sintcost
- cos2t=2cos2t−1
Express the right-hand side:
sintsin2t−costcos2t=sint2sintcost−cost2cos2t−1
Simplify each term:
=2cost−(2cost−cost1)
Combine the terms:
=2cost−2cost+cost1=cost1=sect
All identities have been proven.