Math  /  Calculus

QuestionWork done by a force: Calculate the work done by a force field F(x,y)=(x2F(x, y)=\left(x^{\wedge} 2\right. +y2,xy)\left.+y^{\wedge} 2, x-y\right) on an object moving along the curve C : x=t2,y=t\mathrm{x}=\mathrm{t}^{\wedge} 2, \mathrm{y}=\mathrm{t} from t=0\mathrm{t}=0 to t =1=1.

Studdy Solution

STEP 1

1. The force field is given by F(x,y)=(x2+y2,xy) \mathbf{F}(x, y) = (x^2 + y^2, x - y) .
2. The object moves along the curve C C described by the parametric equations x=t2 x = t^2 and y=t y = t for t t ranging from 0 to 1.
3. The work done by the force field along the curve can be calculated using the line integral of the force field along the given path.

STEP 2

1. Parameterize the curve using the given parametric equations.
2. Compute the differential dr d\mathbf{r} along the curve.
3. Substitute the parameterized variables into the force field.
4. Calculate the dot product Fdr \mathbf{F} \cdot d\mathbf{r} .
5. Integrate the dot product over the given range of t t .

STEP 3

Parameterize the curve using x=t2 x = t^2 and y=t y = t .
r(t)=(t2,t),0t1\mathbf{r}(t) = (t^2, t), \quad 0 \leq t \leq 1

STEP 4

Compute the differential dr d\mathbf{r} along the curve.
dr=(dxdt,dydt)dt=(2t,1)dtd\mathbf{r} = \left( \frac{dx}{dt}, \frac{dy}{dt} \right) dt = (2t, 1) dt

STEP 5

Substitute the parameterized variables x=t2 x = t^2 and y=t y = t into the force field F(x,y) \mathbf{F}(x, y) .
F(x,y)=F(t2,t)=((t2)2+t2,t2t)=(t4+t2,t2t)\mathbf{F}(x, y) = \mathbf{F}(t^2, t) = \left( (t^2)^2 + t^2, t^2 - t \right) = \left( t^4 + t^2, t^2 - t \right)

STEP 6

Calculate the dot product Fdr \mathbf{F} \cdot d\mathbf{r} .
Fdr=(t4+t2,t2t)(2t,1)dt=(t4+t2)2t+(t2t)1dt\mathbf{F} \cdot d\mathbf{r} = \left( t^4 + t^2, t^2 - t \right) \cdot (2t, 1) dt = (t^4 + t^2) \cdot 2t + (t^2 - t) \cdot 1 \, dt
Fdr=(2t5+2t3+t2t)dt\mathbf{F} \cdot d\mathbf{r} = (2t^5 + 2t^3 + t^2 - t) \, dt

STEP 7

Integrate the dot product over the given range of t t .
Work=01(2t5+2t3+t2t)dt\text{Work} = \int_0^1 (2t^5 + 2t^3 + t^2 - t) \, dt
Calculate each term separately:
012t5dt=2[t66]01=26=13\int_0^1 2t^5 \, dt = 2 \left[ \frac{t^6}{6} \right]_0^1 = \frac{2}{6} = \frac{1}{3}
012t3dt=2[t44]01=24=12\int_0^1 2t^3 \, dt = 2 \left[ \frac{t^4}{4} \right]_0^1 = \frac{2}{4} = \frac{1}{2}
01t2dt=[t33]01=13\int_0^1 t^2 \, dt = \left[ \frac{t^3}{3} \right]_0^1 = \frac{1}{3}
01tdt=[t22]01=12\int_0^1 -t \, dt = - \left[ \frac{t^2}{2} \right]_0^1 = - \frac{1}{2}
Sum up all the terms:
Work=13+12+1312=13+13=23\text{Work} = \frac{1}{3} + \frac{1}{2} + \frac{1}{3} - \frac{1}{2} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}
Solution: The work done by the force field F(x,y)=(x2+y2,xy) \mathbf{F}(x, y) = (x^2 + y^2, x - y) on an object moving along the curve x=t2,y=t x = t^2, y = t from t=0 t = 0 to t=1 t = 1 is 23 \frac{2}{3} .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord