Math  /  Algebra

QuestionWhich of the following functions has a graph that is symmetric about the yy-axis?
Select all that apply. A. y=1xy=\frac{1}{x} B. y=x3y=x^{3} C. y=xy=\sqrt{x} D. y=xy=|x|

Studdy Solution

STEP 1

1. A function is symmetric about the y y -axis if for every point (x,y) (x, y) on the graph, the point (x,y)(-x, y) is also on the graph.
2. This symmetry implies that the function satisfies f(x)=f(x) f(x) = f(-x) .

STEP 2

1. Verify symmetry for function A: y=1x y = \frac{1}{x} .
2. Verify symmetry for function B: y=x3 y = x^3 .
3. Verify symmetry for function C: y=x y = \sqrt{x} .
4. Verify symmetry for function D: y=x y = |x| .

STEP 3

Verify symmetry for function A: y=1x y = \frac{1}{x} .
Calculate f(x) f(-x) for f(x)=1x f(x) = \frac{1}{x} :
f(x)=1x=1x f(-x) = \frac{1}{-x} = -\frac{1}{x}
Since f(x)f(x) f(x) \neq f(-x) , the function y=1x y = \frac{1}{x} is not symmetric about the y y -axis.

STEP 4

Verify symmetry for function B: y=x3 y = x^3 .
Calculate f(x) f(-x) for f(x)=x3 f(x) = x^3 :
f(x)=(x)3=x3 f(-x) = (-x)^3 = -x^3
Since f(x)f(x) f(x) \neq f(-x) , the function y=x3 y = x^3 is not symmetric about the y y -axis.

STEP 5

Verify symmetry for function C: y=x y = \sqrt{x} .
Calculate f(x) f(-x) for f(x)=x f(x) = \sqrt{x} :
The function x \sqrt{x} is not defined for negative x x , so f(x) f(-x) does not exist for negative x x .
Since f(x)f(x) f(x) \neq f(-x) , the function y=x y = \sqrt{x} is not symmetric about the y y -axis.

STEP 6

Verify symmetry for function D: y=x y = |x| .
Calculate f(x) f(-x) for f(x)=x f(x) = |x| :
f(x)=x=x f(-x) = |-x| = |x|
Since f(x)=f(x) f(x) = f(-x) , the function y=x y = |x| is symmetric about the y y -axis.
The function that is symmetric about the y y -axis is D \boxed{D} .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord