Math  /  Geometry

QuestionWhich figure has a greater area?

Studdy Solution

STEP 1

1. Both figures are right triangles.
2. The area of a right triangle can be calculated using the formula: 12×base×height\frac{1}{2} \times \text{base} \times \text{height}.

STEP 2

1. Calculate the area of the left triangle.
2. Calculate the area of the right triangle.
3. Compare the areas to determine which is greater.

STEP 3

Calculate the area of the left triangle using the formula for the area of a right triangle:
Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}
Substitute the given values for the left triangle:
Area=12×56 ft×72 ft \text{Area} = \frac{1}{2} \times 56 \text{ ft} \times 72 \text{ ft}
Calculate the area:
Area=12×4032 ft2 \text{Area} = \frac{1}{2} \times 4032 \text{ ft}^2 Area=2016 ft2 \text{Area} = 2016 \text{ ft}^2

STEP 4

Calculate the area of the right triangle using the same formula:
Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}
Substitute the given values for the right triangle:
Area=12×80 ft×48 ft \text{Area} = \frac{1}{2} \times 80 \text{ ft} \times 48 \text{ ft}
Calculate the area:
Area=12×3840 ft2 \text{Area} = \frac{1}{2} \times 3840 \text{ ft}^2 Area=1920 ft2 \text{Area} = 1920 \text{ ft}^2

STEP 5

Compare the areas of the two triangles:
- Left triangle area: 2016 ft22016 \text{ ft}^2 - Right triangle area: 1920 ft21920 \text{ ft}^2
Since 2016 ft2>1920 ft22016 \text{ ft}^2 > 1920 \text{ ft}^2, the left triangle has a greater area.
The left triangle has the greater area.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord