Math  /  Algebra

QuestionWhich equation shows a valid step in solving 2x63+2x+63=0\sqrt[3]{2 x-6}+\sqrt[3]{2 x+6}=0 ? (2x63)2=(2x+63)2(\sqrt[3]{2 x-6})^{2}=(\sqrt[3]{2 x+6})^{2} (2x63)2=(2x+63)2(\sqrt[3]{2 x-6})^{2}=(-\sqrt[3]{2 x+6})^{2} (2x63)3=(2x+63)3(\sqrt[3]{2 x-6})^{3}=(\sqrt[3]{2 x+6})^{3} (2x63)3=(2x+63)3(\sqrt[3]{2 x-6})^{3}=(-\sqrt[3]{2 x+6})^{3} Mark this and return sessmentViewer/Activit...

Studdy Solution

STEP 1

1. We are given the equation 2x63+2x+63=0\sqrt[3]{2x-6} + \sqrt[3]{2x+6} = 0.
2. We need to find a valid algebraic step in solving this equation.

STEP 2

1. Understand the given equation.
2. Simplify the equation to find a valid step.
3. Identify the correct algebraic transformation.

STEP 3

The equation 2x63+2x+63=0\sqrt[3]{2x-6} + \sqrt[3]{2x+6} = 0 implies that the sum of two cube roots is zero.

STEP 4

If the sum of two cube roots is zero, then they must be negatives of each other. Therefore, we have: 2x63=2x+63\sqrt[3]{2x-6} = -\sqrt[3]{2x+6}

STEP 5

To eliminate the cube roots, we cube both sides of the equation: (2x63)3=(2x+63)3(\sqrt[3]{2x-6})^3 = (-\sqrt[3]{2x+6})^3
The valid algebraic step is:
\[ (\sqrt[3]{2x-6})^3 = (-\sqrt[3]{2x+6})^3 $

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord