Math

QuestionFind the values of secant and cosecant for θ=60\theta=60^{\circ} using trig function reciprocals. sec(60)=\sec(60^{\circ})= csc(60)=\csc(60^{\circ})=

Studdy Solution

STEP 1

Assumptions1. We have a trigonometric table at our disposal. . The angle θ\theta is given as 6060^{\circ}.
3. We know that the secant function is the reciprocal of the cosine function, and the cosecant function is the reciprocal of the sine function.

STEP 2

First, we need to find the cosine and sine values for the angle 6060^{\circ} from the trigonometric table.
cos(60)=12\cos(60^{\circ}) = \frac{1}{2}sin(60)=2\sin(60^{\circ}) = \frac{\sqrt{}}{2}

STEP 3

Now, we can calculate the secant of θ\theta by taking the reciprocal of the cosine of θ\theta.
sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}

STEP 4

Substitute the value of cos(60)\cos(60^{\circ}) into the equation to calculate sec(θ)\sec(\theta).
sec(60)=1cos(60)=112\sec(60^{\circ}) = \frac{1}{\cos(60^{\circ})} = \frac{1}{\frac{1}{2}}

STEP 5

Calculate the value of sec(60)\sec(60^{\circ}).
sec(60)=112=2\sec(60^{\circ}) = \frac{1}{\frac{1}{2}} =2

STEP 6

Next, we can calculate the cosecant of θ\theta by taking the reciprocal of the sine of θ\theta.
csc(θ)=1sin(θ)\csc(\theta) = \frac{1}{\sin(\theta)}

STEP 7

Substitute the value of sin(60)\sin(60^{\circ}) into the equation to calculate csc(θ)\csc(\theta).
csc(60)=1sin(60)=132\csc(60^{\circ}) = \frac{1}{\sin(60^{\circ})} = \frac{1}{\frac{\sqrt{3}}{2}}

STEP 8

Calculate the value of csc(60)\csc(60^{\circ}).
csc(60)=132=23\csc(60^{\circ}) = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}Therefore, if θ=60\theta=60^{\circ}, then sec(θ)=2\sec(\theta)=2 and csc(θ)=23\csc(\theta)=\frac{2}{\sqrt{3}}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord