Math

QuestionLösen Sie die folgenden linearen Gleichungen über R:
1. a) 3x+5=233x + 5 = 23 b) 8x12=288x - 12 = 28 c) 10y+23=310y + 23 = 3 d) 115z=2611 - 5z = 26 e) 4z9=24z - 9 = -2 f) 12y+15=1912y + 15 = 19 g) 8012t=3880 - 12t = 38 h) 16=7z+3016 = 7z + 30
2. a) 7x+3=5x+127x + 3 = 5x + 12 b) 6z+8=11z76z + 8 = 11z - 7 c) 9y+4=3y109y + 4 = 3y - 10 d) 1007x=13x100 - 7x = 13x e) 0.9x+5=1.2x3.40.9x + 5 = 1.2x - 3.4 f) 4.2t7=113.3t4.2t - 7 = 11 - 3.3t g) 0.7y+2.8=0.55y1.70.7y + 2.8 = 0.55y - 1.7 h) 0.51.7z=0.74+2.3z0.5 - 1.7z = 0.74 + 2.3z
3. a) 2x3+2=10\frac{2x}{3} + 2 = 10 b) 3x55=7\frac{3x}{5} - 5 = 7 c) x2+x3=25\frac{x}{2} + \frac{x}{3} = 25 d) y3+y4+15=y\frac{y}{3} + \frac{y}{4} + 15 = y e) z3z5=1\frac{z}{3} - \frac{z}{5} = 1 f) u5+2=u34\frac{u}{5} + 2 = \frac{u}{3} - 4 g) 3z4=2z35\frac{3z}{4} = \frac{2z}{3} - 5 h) 5y8=2y5+3\frac{5y}{8} = \frac{2y}{5} + 3
4. a) 3(x+7)=4(2x1)3(x + 7) = 4(2x - 1) b) 4(5x3)+6=104(5x - 3) + 6 = 10 c) 8(y+10)30=5y8(y + 10) - 30 = 5y d) 9(y5)=4y109(y - 5) = 4y - 10 e) 3(6v+4)=9(2v3)3(6v + 4) = 9(2v - 3) f) 8(3+2z)3z=5z88(3 + 2z) - 3z = 5z - 8 g) 5(y0.2)=1.6(3y+0.5)5(y - 0.2) = 1.6(3y + 0.5) h) 4(9w11)12(3w4)=44(9w - 11) - 12(3w - 4) = 4
5. a) 3y+52=2y3\frac{3y + 5}{2} = \frac{2y}{3} b) x+53=3x4\frac{x + 5}{3} = \frac{3x}{4} c) 2x52=4x95\frac{2x - 5}{2} = \frac{4x - 9}{5} d) 4x+306=9x4\frac{4x + 30}{6} = \frac{9 - x}{4} e) 2z+75=93z6\frac{2z + 7}{5} = \frac{9 - 3z}{6} f) 3y+44=4y65\frac{3y + 4}{4} = \frac{4y - 6}{5} g) 4z+16=z32+23\frac{4z + 1}{6} = \frac{z - 3}{2} + \frac{2}{3} h) y+23+y115=2y+35\frac{y + 2}{3} + \frac{y - 1}{15} = \frac{2y + 3}{5}

Studdy Solution

STEP 1

Assumptions1. The equations are linear equations. . The solutions are over the set of real numbers (R).
3. The equations are in the form of ax + b = c, where a, b, and c are constants and x is the variable we need to solve for.

STEP 2

For the first equation x+5=23 x+5=23, we need to isolate x. We start by subtracting5 from both sides of the equation.
x=235 x =23 -5

STEP 3

Calculate the right side of the equation.
3x=183 x =18

STEP 4

To isolate x, divide both sides by3.
x=183x = \frac{18}{3}

STEP 5

Calculate the value of x.
x=x =For the first equation, x=x =.
Note The above steps are for the first equation only. Similar steps can be followed for the rest of the equations.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord