Math  /  Geometry

QuestionDEF\triangle \mathrm{DEF} is shown in the sketch below. G is a point on DF and EG is drawn. DG=DE=x.FG=3x2\mathrm{DG}=\mathrm{DE}=x . \quad \mathrm{FG}=\frac{3 x}{2} and EG=3x\mathrm{EG}=\sqrt{3} x. 2.1 Calculate the size of D˙\dot{D}. (4) 2.2 Calculate the area of GEF\triangle G E F in terms of xx, in its simplest form. (5)

Studdy Solution

STEP 1

Assumptions
1. DEF\triangle DEF is a triangle with point GG on DFDF.
2. DG=DE=xDG = DE = x.
3. FG=3x2FG = \frac{3x}{2}.
4. EG=3xEG = \sqrt{3}x.
5. We need to calculate the size of D\angle D.
6. We need to calculate the area of GEF\triangle GEF in terms of xx.

STEP 2

To find the size of D\angle D, we will use the Law of Cosines in DGE\triangle DGE.
According to the Law of Cosines: EG2=DE2+DG22DEDGcos(D) EG^2 = DE^2 + DG^2 - 2 \cdot DE \cdot DG \cdot \cos(\angle D)

STEP 3

Substitute the given lengths into the Law of Cosines formula: (3x)2=x2+x22xxcos(D) (\sqrt{3}x)^2 = x^2 + x^2 - 2 \cdot x \cdot x \cdot \cos(\angle D)

STEP 4

Simplify the equation: 3x2=x2+x22x2cos(D) 3x^2 = x^2 + x^2 - 2x^2 \cos(\angle D)

STEP 5

Combine like terms: 3x2=2x22x2cos(D) 3x^2 = 2x^2 - 2x^2 \cos(\angle D)

STEP 6

Isolate cos(D)\cos(\angle D): 3x22x2=2x2cos(D) 3x^2 - 2x^2 = -2x^2 \cos(\angle D) x2=2x2cos(D) x^2 = -2x^2 \cos(\angle D)

STEP 7

Divide both sides by 2x2-2x^2: cos(D)=12 \cos(\angle D) = -\frac{1}{2}

STEP 8

Find D\angle D using the inverse cosine function: D=cos1(12) \angle D = \cos^{-1}\left(-\frac{1}{2}\right)

STEP 9

Recognize that cos1(12)\cos^{-1}\left(-\frac{1}{2}\right) corresponds to 120120^\circ: D=120 \angle D = 120^\circ

STEP 10

Now, we need to calculate the area of GEF\triangle GEF. We will use the formula for the area of a triangle: Area=12baseheight \text{Area} = \frac{1}{2} \cdot \text{base} \cdot \text{height}

STEP 11

In GEF\triangle GEF, the base is FG=3x2FG = \frac{3x}{2} and the height can be considered as the perpendicular distance from EE to FGFG, which is EG=3xEG = \sqrt{3}x.

STEP 12

Substitute the values into the area formula: Area=123x23x \text{Area} = \frac{1}{2} \cdot \frac{3x}{2} \cdot \sqrt{3}x

STEP 13

Simplify the expression: Area=123x3x2 \text{Area} = \frac{1}{2} \cdot \frac{3x \cdot \sqrt{3}x}{2} Area=1233x22 \text{Area} = \frac{1}{2} \cdot \frac{3 \sqrt{3} x^2}{2} Area=33x24 \text{Area} = \frac{3 \sqrt{3} x^2}{4}

STEP 14

Thus, the area of GEF\triangle GEF in terms of xx is: Area=33x24 \text{Area} = \frac{3 \sqrt{3} x^2}{4}
Solution:
1. The size of D\angle D is 120120^\circ.
2. The area of GEF\triangle GEF in terms of xx is 33x24\frac{3 \sqrt{3} x^2}{4}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord