Math  /  Data & Statistics

QuestionThe table lists the average tuition and fees at private colleges and universities for selected years. \begin{tabular}{|c|c|c|c|c|c|} \hline Year & 1985 & 1990 & 1995 & 2000 & 2008 \\ \hline \begin{tabular}{c} Tuition and \\ Fees \\ (in dollars) \end{tabular} & 5328 & 9369 & 12,336 & 16,154 & 25,111 \\ \hline \end{tabular} (a) Find the equation of the least-squares regression line that models the data. yy \approx \square (Type the slope as a decimal rounded to three decimal places. Round the yy-intercept to the nearest integer.)

Studdy Solution

STEP 1

1. The independent variable x x represents the year.
2. The dependent variable y y represents the tuition and fees in dollars.
3. We will use the least-squares method to find the regression line.
4. The years will be transformed into a form suitable for regression analysis, typically by setting the first year as x=0 x = 0 .

STEP 2

1. Transform the year data for regression analysis.
2. Calculate the necessary sums for the least-squares formulas.
3. Compute the slope m m of the regression line.
4. Compute the y-intercept b b of the regression line.
5. Write the equation of the regression line.

STEP 3

Transform the year data by setting 1985 as x=0 x = 0 . The transformed years are:
\begin{align*} 1985 & \rightarrow 0 \\ 1990 & \rightarrow 5 \\ 1995 & \rightarrow 10 \\ 2000 & \rightarrow 15 \\ 2008 & \rightarrow 23 \\ \end{align*}

STEP 4

Calculate the necessary sums:
\begin{align*} \sum x &= 0 + 5 + 10 + 15 + 23 = 53 \\ \sum y &= 5328 + 9369 + 12336 + 16154 + 25111 = 68298 \\ \sum xy &= (0 \times 5328) + (5 \times 9369) + (10 \times 12336) + (15 \times 16154) + (23 \times 25111) = 100,7853 \\ \sum x^2 &= 0^2 + 5^2 + 10^2 + 15^2 + 23^2 = 899 \\ \end{align*}

STEP 5

Compute the slope m m using the formula:
m=n(xy)(x)(y)n(x2)(x)2m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}
where n=5 n = 5 .
m=5(1007853)(53)(68298)5(899)(53)2=5039265362979444952809=14094711686835.993m = \frac{5(1007853) - (53)(68298)}{5(899) - (53)^2} = \frac{5039265 - 3629794}{4495 - 2809} = \frac{1409471}{1686} \approx 835.993

STEP 6

Compute the y-intercept b b using the formula:
b=ym(x)nb = \frac{\sum y - m(\sum x)}{n}
b=68298835.993×535=6829844207.62954818.874b = \frac{68298 - 835.993 \times 53}{5} = \frac{68298 - 44207.629}{5} \approx 4818.874
Round b b to the nearest integer: b4819 b \approx 4819 .

STEP 7

Write the equation of the regression line:
y835.993x+4819y \approx 835.993x + 4819
The equation of the least-squares regression line is:
y835.993x+4819 y \approx 835.993x + 4819

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord