Math  /  Geometry

QuestionThe swan below is composed of several triangles. Use the given information and the figure to find each angle measure. Note: Figure not drawn to scale.
Given: ABC\triangle A B C is equilateral; DECEEF\overline{D E} \cong \overline{C E} \cong \overline{E F} loverline {DE}\{\mathrm{DE}\} \{congloverlinc {CE}\{\mathrm{CE}\} /congloverline {EF};KOFO\{\mathrm{EF}\} ; \overline{K O} \cong \overline{F O} loverline {KO}\{\mathrm{KO}\} \congloverline {FO};JNJO\{\mathrm{FO}\} ; \overline{J N} \cong \overline{J O} loverline {JN}\{\mathrm{JN}\} /congloverline {JO};BCDBDC;CGFCFG;HKN\{\mathrm{JO}\} ; \angle B C D \cong \angle B D C ; C G F \cong \angle C F G ; \angle H K N \cong HNK;GCFGKFJHM;KFHKLH\angle H N K ; \triangle G C F \cong \triangle G K F \cong \triangle J H M ; \triangle K F H \cong \triangle K L H
Triangular Swan Portfolio Print the document so that you can write on it and mark the pictureshowin congruent sides - (2 points)
1. mABC=m \angle \mathrm{ABC}= 60
2. mBCA=m \angle B C A= 60 \square
3. mCAB=m \angle \mathrm{CAB}= 60 \square
4. mBCD=m \angle B C D= 70 \square
5. mBDC=70m \angle \mathrm{BDC}=\mid 70

Studdy Solution

STEP 1

1. ABC\triangle ABC is equilateral, meaning all its angles are 6060^\circ.
2. DECEEF\overline{DE} \cong \overline{CE} \cong \overline{EF}, indicating DCE\triangle DCE and ECF\triangle ECF are isosceles.
3. KOFO\overline{KO} \cong \overline{FO}, indicating KOF\triangle KOF is isosceles.
4. JNJO\overline{JN} \cong \overline{JO}, indicating JNO\triangle JNO is isosceles.
5. BCDBDC\angle BCD \cong \angle BDC, indicating BCD\triangle BCD is isosceles.
6. CGFCFG\angle CGF \cong \angle CFG, indicating GCF\triangle GCF is isosceles.
7. HKNHNK\angle HKN \cong \angle HNK, indicating HKN\triangle HKN is isosceles.
8. GCFGKFJHM\triangle GCF \cong \triangle GKF \cong \triangle JHM, indicating these triangles are congruent.
9. KFHKLH\triangle KFH \cong \triangle KLH, indicating these triangles are congruent.

STEP 2

1. Determine angles in ABC\triangle ABC.
2. Determine angles in BCD\triangle BCD.
3. Use isosceles and congruent triangle properties to find other angles.

STEP 3

Determine angles in ABC\triangle ABC:
Since ABC\triangle ABC is equilateral, each angle measures 6060^\circ.
mABC=60 m\angle ABC = 60^\circ mBCA=60 m\angle BCA = 60^\circ mCAB=60 m\angle CAB = 60^\circ

STEP 4

Determine angles in BCD\triangle BCD:
Given BCDBDC\angle BCD \cong \angle BDC and mBCD=70m\angle BCD = 70^\circ, it follows that:
mBDC=70 m\angle BDC = 70^\circ
Since the sum of angles in a triangle is 180180^\circ, we find mCBDm\angle CBD:
mCBD=180mBCDmBDC m\angle CBD = 180^\circ - m\angle BCD - m\angle BDC =1807070 = 180^\circ - 70^\circ - 70^\circ =40 = 40^\circ

STEP 5

Use isosceles and congruent triangle properties to find other angles:
This step requires more information about the specific triangles and angles in the swan figure, which is not provided in the problem statement. Therefore, we cannot proceed further without additional details.
The angles determined so far are:
1. mABC=60 m\angle ABC = 60^\circ
2. mBCA=60 m\angle BCA = 60^\circ
3. mCAB=60 m\angle CAB = 60^\circ
4. mBCD=70 m\angle BCD = 70^\circ
5. mBDC=70 m\angle BDC = 70^\circ

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord