Math

Question Find the value of sin(2tan1x)\sin \left(2 \tan ^{-1} x\right).

Studdy Solution

STEP 1

Assumptions1. The problem is to simplify the expression sin(tan1x)\sin \left( \tan ^{-1} x\right). We can use the identity tan1x=π4tan1(1x1+x)\tan ^{-1} x = \frac{\pi}{4} - \tan ^{-1} \left(\frac{1-x}{1+x}\right)3. We can use the double angle formula for sine sin(A)=sin(A)cos(A)\sin(A) =\sin(A)\cos(A)

STEP 2

First, we apply the identity tan1x=π4tan1(1x1+x)\tan ^{-1} x = \frac{\pi}{4} - \tan ^{-1} \left(\frac{1-x}{1+x}\right) to the expression.
sin(2tan1x)=sin(2(π4tan1(1x1+x)))\sin \left(2 \tan ^{-1} x\right) = \sin \left(2\left(\frac{\pi}{4} - \tan ^{-1} \left(\frac{1-x}{1+x}\right)\right)\right)

STEP 3

implify the expression inside the sine function.
sin(2tan1x)=sin(π22tan1(1x1+x))\sin \left(2 \tan ^{-1} x\right) = \sin \left(\frac{\pi}{2} -2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right)

STEP 4

Use the sine of difference identity sin(AB)=sin(A)cos(B)cos(A)sin(B)\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B).
sin(π22tan1(1x1+x))=sin(π2)cos(2tan1(1x1+x))cos(π2)sin(2tan1(1x1+x))\sin \left(\frac{\pi}{2} -2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right) = \sin \left(\frac{\pi}{2}\right)\cos \left(2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right) - \cos \left(\frac{\pi}{2}\right)\sin \left(2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right)

STEP 5

implify the expression using the fact that sin(π2)=1\sin \left(\frac{\pi}{2}\right) =1 and cos(π2)=0\cos \left(\frac{\pi}{2}\right) =0.
sin(π22tan1(1x1+x))=cos(2tan1(1x1+x))\sin \left(\frac{\pi}{2} -2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right) = \cos \left(2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right)

STEP 6

Use the double angle formula for cosine cos(2A)=12sin2(A)\cos(2A) =1 -2\sin^2(A).
cos(2tan1(1x1+x))=12sin2(tan1(1x1+x))\cos \left(2\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right) =1 -2\sin^2 \left(\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right)

STEP 7

Use the identity sin(tan1(A))=A1+A2\sin(\tan^{-1}(A)) = \frac{A}{\sqrt{1 + A^2}}.
12sin2(tan1(1x1+x))=12(1x1+x1+(1x1+x)2)21 -2\sin^2 \left(\tan ^{-1} \left(\frac{1-x}{1+x}\right)\right) =1 -2\left(\frac{\frac{1-x}{1+x}}{1 + \left(\frac{1-x}{1+x}\right)^2}\right)^2

STEP 8

implify the expression.
12(1x1+x1+(1x1+x)2)2=1x21+x21 -2\left(\frac{\frac{1-x}{1+x}}{1 + \left(\frac{1-x}{1+x}\right)^2}\right)^2 = \frac{1 - x^2}{1 + x^2}So, sin(2tan1x)=1x21+x2\sin \left(2 \tan ^{-1} x\right) = \frac{1 - x^2}{1 + x^2}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord