Math  /  Trigonometry

Question1he point A(40,9)A(-40,-9) lies on the terminal arm of an angle in standard position. Determine the exact expression for he six trigonometric ratios of the angle.

Studdy Solution

STEP 1

1. The point A(40,9) A(-40, -9) is on the terminal arm of an angle in standard position.
2. The angle is measured from the positive x-axis.
3. The six trigonometric ratios are sine, cosine, tangent, cosecant, secant, and cotangent.

STEP 2

1. Calculate the radius (distance from the origin to the point).
2. Determine the sine, cosine, and tangent ratios.
3. Determine the cosecant, secant, and cotangent ratios.

STEP 3

Calculate the radius using the distance formula:
r=x2+y2 r = \sqrt{x^2 + y^2} =(40)2+(9)2 = \sqrt{(-40)^2 + (-9)^2} =1600+81 = \sqrt{1600 + 81} =1681 = \sqrt{1681} =41 = 41

STEP 4

Determine the sine, cosine, and tangent ratios:
Sine: sinθ=yr=941 \sin \theta = \frac{y}{r} = \frac{-9}{41}
Cosine: cosθ=xr=4041 \cos \theta = \frac{x}{r} = \frac{-40}{41}
Tangent: tanθ=yx=940=940 \tan \theta = \frac{y}{x} = \frac{-9}{-40} = \frac{9}{40}

STEP 5

Determine the cosecant, secant, and cotangent ratios:
Cosecant: cscθ=1sinθ=419=419 \csc \theta = \frac{1}{\sin \theta} = \frac{41}{-9} = -\frac{41}{9}
Secant: secθ=1cosθ=4140=4140 \sec \theta = \frac{1}{\cos \theta} = \frac{41}{-40} = -\frac{41}{40}
Cotangent: cotθ=1tanθ=409 \cot \theta = \frac{1}{\tan \theta} = \frac{40}{9}
The exact expressions for the six trigonometric ratios are:
sinθ=941,cosθ=4041,tanθ=940 \sin \theta = -\frac{9}{41}, \quad \cos \theta = -\frac{40}{41}, \quad \tan \theta = \frac{9}{40}
cscθ=419,secθ=4140,cotθ=409 \csc \theta = -\frac{41}{9}, \quad \sec \theta = -\frac{41}{40}, \quad \cot \theta = \frac{40}{9}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord