Math

QuestionAn employee's Medicare tax is given by a piecewise function. Find f(0)f(0), f(200)f(200), and f(400)f(400) for f(x)f(x).
f(x)={13.5x if 0x2002700+26.5(x200) if x>200 f(x)=\left\{\begin{array}{ll} 13.5 x & \text { if } 0 \leq x \leq 200 \\ 2700+26.5(x-200) & \text { if } x>200 \end{array}\right.

Studdy Solution

STEP 1

Assumptions1. The function f(x)f(x) is a piecewise linear function that describes the employee's Medicare tax in dollars. . xx is the employee's Medicare wages in thousands of dollars.
3. The function is defined as f(x)=13.5xf(x) =13.5x for 0x2000 \leq x \leq200 and f(x)=2700+26.5(x200)f(x) =2700+26.5(x-200) for x>200x >200.

STEP 2

First, we need to find the function value f(0)f(0). Since 00 falls in the interval 0x2000 \leq x \leq200, we use the function f(x)=13.5xf(x) =13.5x.
f(0)=13.5×0f(0) =13.5 \times0

STEP 3

Calculate the function value f(0)f(0).
f(0)=13.5×0=0f(0) =13.5 \times0 =0

STEP 4

Next, we need to find the function value f(200)f(200). Since 200200 falls in the interval 0x2000 \leq x \leq200, we use the function f(x)=13.xf(x) =13.x.
f(200)=13.×200f(200) =13. \times200

STEP 5

Calculate the function value f(200)f(200).
f(200)=13.5×200=2700f(200) =13.5 \times200 =2700

STEP 6

Finally, we need to find the function value f(400)f(400). Since 400400 is greater than 200200, we use the function f(x)=2700+26.5(x200)f(x) =2700+26.5(x-200).
f(400)=2700+26.5×(400200)f(400) =2700 +26.5 \times (400 -200)

STEP 7

Calculate the function value f(400)f(400).
f(400)=2700+26.5×(400200)=2700+26.5×200=2700+5300=8000f(400) =2700 +26.5 \times (400 -200) =2700 +26.5 \times200 =2700 +5300 =8000So, the function values are f(0)=0f(0) =0, f(200)=2700f(200) =2700, and f(400)=8000f(400) =8000.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord