Math

Question Find the linear approximation of cos8\cos 8 about x0=12x_0 = \frac{1}{2} for the function f(x)=cos(2x)f(x) = \cos(2x).

Studdy Solution

STEP 1

Assumptions
1. The function given is f(x)=cos(2x)f(x) = \cos(2x).
2. We need to find the linear approximation of cos(8)\cos(8) about x0=12x_0 = \frac{1}{2}.
3. A linear approximation can be found using the formula for the tangent line at x0x_0, which is f(x0)+f(x0)(xx0)f(x_0) + f'(x_0)(x - x_0).
4. The derivative of cos(2x)\cos(2x) with respect to xx is needed for the linear approximation.

STEP 2

First, we need to find the derivative of f(x)=cos(2x)f(x) = \cos(2x) with respect to xx.
f(x)=ddxcos(2x)f'(x) = \frac{d}{dx} \cos(2x)

STEP 3

Using the chain rule, the derivative of cos(2x)\cos(2x) is 2sin(2x)-2\sin(2x).
f(x)=2sin(2x)f'(x) = -2\sin(2x)

STEP 4

Now, we need to evaluate f(x)f(x) and f(x)f'(x) at x0=12x_0 = \frac{1}{2}.
f(12)=cos(212)f\left(\frac{1}{2}\right) = \cos\left(2 \cdot \frac{1}{2}\right)

STEP 5

Calculate f(12)f\left(\frac{1}{2}\right).
f(12)=cos(1)f\left(\frac{1}{2}\right) = \cos(1)

STEP 6

Evaluate f(x)f'(x) at x0=12x_0 = \frac{1}{2}.
f(12)=2sin(212)f'\left(\frac{1}{2}\right) = -2\sin\left(2 \cdot \frac{1}{2}\right)

STEP 7

Calculate f(12)f'\left(\frac{1}{2}\right).
f(12)=2sin(1)f'\left(\frac{1}{2}\right) = -2\sin(1)

STEP 8

Now we have both f(12)f\left(\frac{1}{2}\right) and f(12)f'\left(\frac{1}{2}\right). We can use these to find the linear approximation of f(x)f(x) about x0=12x_0 = \frac{1}{2}.
L(x)=f(12)+f(12)(x12)L(x) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)(x - \frac{1}{2})

STEP 9

Substitute the values of f(12)f\left(\frac{1}{2}\right) and f(12)f'\left(\frac{1}{2}\right) into the linear approximation formula.
L(x)=cos(1)2sin(1)(x12)L(x) = \cos(1) - 2\sin(1)(x - \frac{1}{2})

STEP 10

Finally, we need to evaluate the linear approximation L(x)L(x) at x=82=4x = \frac{8}{2} = 4 to approximate cos(8)\cos(8).
L(4)=cos(1)2sin(1)(412)L(4) = \cos(1) - 2\sin(1)(4 - \frac{1}{2})

STEP 11

Calculate L(4)L(4).
L(4)=cos(1)2sin(1)(72)L(4) = \cos(1) - 2\sin(1)\left(\frac{7}{2}\right)

STEP 12

Simplify the expression.
L(4)=cos(1)7sin(1)L(4) = \cos(1) - 7\sin(1)
The linear approximation of cos(8)\cos(8) about x0=12x_0 = \frac{1}{2} is cos(1)7sin(1)\cos(1) - 7\sin(1).

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord