Math

QuestionFind the integral of 1x2x+1\frac{1}{x^{2}-x+1} with respect to xx.

Studdy Solution

STEP 1

Question: Which of the following is the completed square form of x2x+1x^{2}-x+1?
A) (x12)2+14\left(x-\frac{1}{2}\right)^{2} + \frac{1}{4} B) (x12)2+34\left(x-\frac{1}{2}\right)^{2} + \frac{3}{4} C) (x+12)2+34\left(x+\frac{1}{2}\right)^{2} + \frac{3}{4} D) (x+12)2+14\left(x+\frac{1}{2}\right)^{2} + \frac{1}{4}
Answer: B) (x12)2+34\left(x-\frac{1}{2}\right)^{2} + \frac{3}{4}

STEP 2

Question: If we let u=x12u = x - \frac{1}{2}, what will be the new integral?
A) 1u2+34du\int \frac{1}{u^{2} + \frac{3}{4}} d u B) 1u2+12du\int \frac{1}{u^{2} + \frac{1}{2}} d u C) 1u2+1du\int \frac{1}{u^{2} + 1} d u D) 1u2+2du\int \frac{1}{u^{2} + 2} d u
Answer: A) 1u2+34du\int \frac{1}{u^{2} + \frac{3}{4}} d u

STEP 3

Question: How can we simplify the integral 1u2+34du\int \frac{1}{u^{2} + \frac{3}{4}} d u further by multiplying the numerator and denominator by a certain number?
A) 43143u2+1du\int \frac{4}{3} \cdot \frac{1}{\frac{4}{3}u^{2} + 1} d u B) 43134u2+1du\int \frac{4}{3} \cdot \frac{1}{\frac{3}{4}u^{2} + 1} d u C) 34143u2+1du\int \frac{3}{4} \cdot \frac{1}{\frac{4}{3}u^{2} + 1} d u D) 34134u2+1du\int \frac{3}{4} \cdot \frac{1}{\frac{3}{4}u^{2} + 1} d u
Answer: A) 43143u2+1du\int \frac{4}{3} \cdot \frac{1}{\frac{4}{3}u^{2} + 1} d u

STEP 4

Question: What is the result of integrating the expression 431(23)2+u2du\int \frac{4}{3} \cdot \frac{1}{\left(\frac{2}{\sqrt{3}}\right)^{2} + u^{2}} d u using the standard integral formula?
A) 4332arctan(u32)+C\frac{4}{3} \cdot \frac{\sqrt{3}}{2} \arctan\left(\frac{u \sqrt{3}}{2}\right) + C B) 433arctan(u32)+C\frac{4\sqrt{3}}{3} \arctan\left(\frac{u \sqrt{3}}{2}\right) + C C) 2332arctan(u32)+C\frac{2}{3} \cdot \frac{\sqrt{3}}{2} \arctan\left(\frac{u \sqrt{3}}{2}\right) + C D) 233arctan(u32)+C\frac{2\sqrt{3}}{3} \arctan\left(\frac{u \sqrt{3}}{2}\right) + C
Answer: D) 233arctan(u32)+C\frac{2\sqrt{3}}{3} \arctan\left(\frac{u \sqrt{3}}{2}\right) + C

STEP 5

Question: After substituting back uu in terms of xx, what is the final result of the integral 1x2x+1dx\int \frac{1}{x^{2}-x+1} d x?
A) 233arctan((x12)32)+C\frac{2\sqrt{3}}{3} \arctan\left(\frac{(x-\frac{1}{2}) \sqrt{3}}{2}\right) + C B) 23arctan((x12)32)+C\frac{2}{3} \arctan\left(\frac{(x-\frac{1}{2}) \sqrt{3}}{2}\right) + C C) 233arctan((x+12)32)+C\frac{2\sqrt{3}}{3} \arctan\left(\frac{(x+\frac{1}{2}) \sqrt{3}}{2}\right) + C D) 23arctan((x+12)32)+C\frac{2}{3} \arctan\left(\frac{(x+\frac{1}{2}) \sqrt{3}}{2}\right) + C
Answer: A) 233arctan((x12)32)+C\frac{2\sqrt{3}}{3} \arctan\left(\frac{(x-\frac{1}{2}) \sqrt{3}}{2}\right) + C

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord