Math

Question Find the values of f(8)f(-8) and f(125)f(125) for the function f(x)=x33f(x) = \sqrt[3]{x} - 3.

Studdy Solution

STEP 1

Assumptions
1. The function f(x)f(x) is defined as f(x)=x33f(x)=\sqrt[3]{x}-3.
2. We need to find the values of f(8)f(-8) and f(125)f(125).

STEP 2

To find f(8)f(-8), substitute x=8x=-8 into the function f(x)f(x).
f(8)=833f(-8) = \sqrt[3]{-8} - 3

STEP 3

Calculate the cube root of 8-8.
83=2\sqrt[3]{-8} = -2

STEP 4

Substitute the cube root of 8-8 back into the function.
f(8)=23f(-8) = -2 - 3

STEP 5

Calculate the value of f(8)f(-8).
f(8)=23=5f(-8) = -2 - 3 = -5

STEP 6

To find f(125)f(125), substitute x=125x=125 into the function f(x)f(x).
f(125)=12533f(125) = \sqrt[3]{125} - 3

STEP 7

Calculate the cube root of 125125.
1253=5\sqrt[3]{125} = 5

STEP 8

Substitute the cube root of 125125 back into the function.
f(125)=53f(125) = 5 - 3

STEP 9

Calculate the value of f(125)f(125).
f(125)=53=2f(125) = 5 - 3 = 2
The solutions are: f(8)=5f(125)=2 \begin{array}{l} f(-8)=-5 \\ f(125)=2 \end{array}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord