Math

QuestionSimplify the expression: (x+Δx)29(x+Δx)+8(x29x+8)Δx\frac{(x+\Delta x)^{2}-9(x+\Delta x)+8-(x^{2}-9 x+8)}{\Delta x}.

Studdy Solution

STEP 1

Assumptions1. We are given the expression (x+Δx)9(x+Δx)+8(x9x+8)Δx\frac{(x+\Delta x)^{}-9(x+\Delta x)+8-\left(x^{}-9 x+8\right)}{\Delta x}. . We need to simplify this expression.

STEP 2

First, we need to expand the numerator of the given expression.(x+Δx)29(x+Δx)+8(x29x+8)Δx=x2+2xΔx+(Δx)29x9Δx+8x2+9x8Δx\frac{(x+\Delta x)^{2}-9(x+\Delta x)+8-\left(x^{2}-9 x+8\right)}{\Delta x} = \frac{x^2 +2x\Delta x + (\Delta x)^2 -9x -9\Delta x +8 -x^2 +9x -8}{\Delta x}

STEP 3

Now, we need to simplify the numerator by cancelling out the like terms.
x2+2xΔx+(Δx)29x9Δx+8x2+9x8Δx=2xΔx+(Δx)29ΔxΔx\frac{x^2 +2x\Delta x + (\Delta x)^2 -9x -9\Delta x +8 -x^2 +9x -8}{\Delta x} = \frac{2x\Delta x + (\Delta x)^2 -9\Delta x}{\Delta x}

STEP 4

Now, we can factor out Δx\Delta x from the numerator.
2xΔx+(Δx)29ΔxΔx=Δx(2x+Δx9)\frac{2x\Delta x + (\Delta x)^2 -9\Delta x}{\Delta x} = \Delta x(2x + \Delta x -9)

STEP 5

Now, we can cancel out Δx\Delta x from the numerator and the denominator.
Δx(2x+Δx9)Δx=2x+Δx9\frac{\Delta x(2x + \Delta x -9)}{\Delta x} =2x + \Delta x -9So, the simplified form of the given expression is 2x+Δx92x + \Delta x -9.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord