Math  /  Data & Statistics

QuestionThe data below is a list of 120 values of Body Mass Index (BMI) data from the 1998 National Health Interview Survey on US adults. \begin{tabular}{llllllllll} 27.4 & 31.0 & 34.2 & 28.9 & 25.7 & 37.1 & 24.8 & 34.9 & 27.5 & 25.9 \\ 23.5 & 30.9 & 27.4 & 25.9 & 22.3 & 21.3 & 37.8 & 28.8 & 28.8 & 23.4 \\ 21.9 & 30.2 & 24.7 & 36.6 & 25.4 & 21.3 & 22.9 & 24.2 & 27.1 & 23.1 \\ 28.6 & 27.3 & 22.7 & 22.7 & 27.3 & 23.1 & 22.3 & 32.6 & 29.5 & 38.8 \\ 21.9 & 24.3 & 26.5 & 30.1 & 27.4 & 24.5 & 22.8 & 24.3 & 30.9 & 28.7 \\ 22.4 & 35.9 & 30.0 & 26.2 & 27.4 & 24.1 & 19.8 & 26.9 & 23.3 & 28.4 \\ 20.8 & 26.5 & 28.2 & 18.3 & 30.8 & 27.6 & 21.5 & 33.6 & 24.8 & 28.3 \\ 25.0 & 35.8 & 25.4 & 27.3 & 23.0 & 25.7 & 22.3 & 35.5 & 29.8 & 27.4 \\ 31.3 & 24.0 & 25.8 & 21.1 & 21.1 & 29.3 & 24.0 & 22.5 & 32.8 & 38.2 \\ 27.3 & 19.2 & 26.6 & 30.3 & 31.6 & 25.4 & 34.8 & 24.7 & 25.6 & 28.3 \\ 26.5 & 28.3 & 35.0 & 20.2 & 37.5 & 25.8 & 27.5 & 28.8 & 31.1 & 28.7 \\ 24.1 & 24.0 & 20.7 & 24.6 & 21.1 & 21.9 & 30.8 & 24.6 & 33.2 & 31.6 \end{tabular}
Perform the following using the data as provided:
1. An Ordered Array (Ascending order) of the data
2. Generate a grouped frequency distribution table with appropriate intervals
3. Draw a histogram for the distribution
4. Construct a Cumulative Relative Frequency table and use it to draw a i. cumulative frequency curve ii. cumulative frequency polygon iii. pie chart iv. cumulative relative frequency histogram
5. Compute the: i. Mean ii. Median iii. Variance iv. Standard deviation v. Coefficient of variation

Studdy Solution

STEP 1

1. The data set consists of 120 BMI values.
2. The tasks involve ordering the data, creating frequency distributions, and calculating statistical measures.

STEP 2

1. Order the data in ascending order.
2. Generate a grouped frequency distribution table.
3. Draw a histogram for the distribution.
4. Construct a cumulative relative frequency table and use it to draw: i. Cumulative frequency curve ii. Cumulative frequency polygon iii. Pie chart iv. Cumulative relative frequency histogram
5. Compute statistical measures: i. Mean ii. Median iii. Variance iv. Standard deviation v. Coefficient of variation

STEP 3

List the data in ascending order.
\[ 18.3, 19.2, 19.8, 20.2, 20.7, 20.8, 21.1, 21.1, 21.3, 21.3, 21.5, 21.9, 21.9, 21.9, 22.3, 22.3, 22.3, 22.4, 22.5, 22.7, 22.7, 22.8, 23.0, 23.1, 23.1, 23.3, 23.4, 23.5, 24.0, 24.0, 24.0, 24.1, 24.1, 24.2, 24.3, 24.3, 24.5, 24.6, 24.6, 24.7, 24.7, 24.8, 24.8, 25.0, 25.4, 25.4, 25.4, 25.6, 25.7, 25.7, 25.8, 25.8, 25.9, 25.9, 26.2, 26.5, 26.5, 26.5, 26.6, 26.9, 27.1, 27.3, 27.3, 27.3, 27.3, 27.4, 27.4, 27.4, 27.4, 27.5, 27.5, 27.6, 28.2, 28.3, 28.3, 28.3, 28.4, 28.6, 28.7, 28.7, 28.8, 28.8, 28.8, 28.9, 29.3, 29.5, 29.8, 30.0, 30.1, 30.2, 30.3, 30.8, 30.8, 30.9, 30.9, 31.0, 31.1, 31.3, 31.6, 31.6, 32.6, 32.8, 33.2, 33.6, 34.2, 34.8, 34.9, 35.0, 35.5, 35.8, 35.9, 36.6, 37.1, 37.5, 37.8, 38.2, 38.8 $

STEP 4

Determine appropriate intervals for the frequency distribution. For example, use intervals of 2 units: 1820,2022,,3840 18-20, 20-22, \ldots, 38-40 .

STEP 5

Count the frequency of data points within each interval and create the frequency distribution table.
IntervalFrequency1820320221222242124262226282028301230321032344343663638538405\begin{array}{|c|c|} \hline \text{Interval} & \text{Frequency} \\ \hline 18-20 & 3 \\ 20-22 & 12 \\ 22-24 & 21 \\ 24-26 & 22 \\ 26-28 & 20 \\ 28-30 & 12 \\ 30-32 & 10 \\ 32-34 & 4 \\ 34-36 & 6 \\ 36-38 & 5 \\ 38-40 & 5 \\ \hline \end{array}

STEP 6

Draw a histogram using the frequency distribution table. Each interval is represented on the x-axis, and the frequency is represented on the y-axis.

STEP 7

Construct a cumulative frequency table by summing the frequencies cumulatively.
IntervalCumulative Frequency1820320221522243624265826287828309030321003234104343611036381153840120\begin{array}{|c|c|} \hline \text{Interval} & \text{Cumulative Frequency} \\ \hline 18-20 & 3 \\ 20-22 & 15 \\ 22-24 & 36 \\ 24-26 & 58 \\ 26-28 & 78 \\ 28-30 & 90 \\ 30-32 & 100 \\ 32-34 & 104 \\ 34-36 & 110 \\ 36-38 & 115 \\ 38-40 & 120 \\ \hline \end{array}

STEP 8

Use the cumulative frequency table to draw: i. Cumulative frequency curve (ogive) ii. Cumulative frequency polygon iii. Pie chart iv. Cumulative relative frequency histogram

STEP 9

Compute the mean of the data set.
Mean=BMI values120\text{Mean} = \frac{\sum \text{BMI values}}{120}

STEP 10

Compute the median of the data set. Since there are 120 values, the median is the average of the 60th and 61st values in the ordered list.

STEP 11

Compute the variance using the formula:
Variance=(xiMean)2n\text{Variance} = \frac{\sum (x_i - \text{Mean})^2}{n}

STEP 12

Compute the standard deviation as the square root of the variance.

STEP 13

Compute the coefficient of variation using the formula:
Coefficient of Variation=Standard DeviationMean×100%\text{Coefficient of Variation} = \frac{\text{Standard Deviation}}{\text{Mean}} \times 100\%
The solution involves detailed calculations and graphical representations, which are typically performed using statistical software or tools for accuracy and efficiency.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord