Math  /  Algebra

QuestionSuppose that T:R3R4T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} is such that its action on a vector [xyz]\left[\begin{array}{c}x \\ y \\ z\end{array}\right] is given below: T[xyz]=[x+3y+3zx2yz2x+8y+9z3x+8y+6z]T\left[\begin{array}{c} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} x+3 y+3 z \\ -x-2 y-z \\ 2 x+8 y+9 z \\ 3 x+8 y+6 z \end{array}\right]
Find the matrix MDB(T)M_{D B}(T) that represents TT relative to the bases BB and DD shown below: B={[122],[222],[043],D={1341],[1450],[39115],[1473]}MDB(T)=[000000000]\begin{array}{l} B=\left\{\left[\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right],\left[\begin{array}{c} -2 \\ 2 \\ -2 \end{array}\right],\left[\begin{array}{c} 0 \\ -4 \\ 3 \end{array}\right], D=\left\{\begin{array}{c} 1 \\ -3 \\ 4 \\ 1 \end{array}\right],\left[\begin{array}{c} -1 \\ 4 \\ -5 \\ 0 \end{array}\right],\left[\begin{array}{c} -3 \\ 9 \\ -11 \\ -5 \end{array}\right],\left[\begin{array}{c} 1 \\ -4 \\ 7 \\ -3 \end{array}\right]\right\} \\ M_{D B}(T)=\left[\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \end{array}

Studdy Solution

STEP 1

1. The linear transformation T:R3R4 T: \mathbb{R}^3 \rightarrow \mathbb{R}^4 is defined by the given action on vectors.
2. We are given bases B B for R3\mathbb{R}^3 and D D for R4\mathbb{R}^4.
3. We need to find the matrix MDB(T) M_{DB}(T) that represents T T relative to these bases.

STEP 2

1. Determine the images of the basis vectors of B B under T T .
2. Express these images as linear combinations of the basis vectors of D D .
3. Construct the matrix MDB(T) M_{DB}(T) using the coefficients from the linear combinations.

STEP 3

Calculate the image of the first basis vector of B B under T T :
T([122])=[1+3(2)+3(2)12(2)22(1)+8(2)+9(2)3(1)+8(2)+6(2)] T\left(\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 1 + 3(-2) + 3(2) \\ -1 - 2(-2) - 2 \\ 2(1) + 8(-2) + 9(2) \\ 3(1) + 8(-2) + 6(2) \end{bmatrix}
Simplify each component:
=[16+61+42216+18316+12] = \begin{bmatrix} 1 - 6 + 6 \\ -1 + 4 - 2 \\ 2 - 16 + 18 \\ 3 - 16 + 12 \end{bmatrix}
=[1141] = \begin{bmatrix} 1 \\ 1 \\ 4 \\ -1 \end{bmatrix}

STEP 4

Express [1141] \begin{bmatrix} 1 \\ 1 \\ 4 \\ -1 \end{bmatrix} as a linear combination of the basis vectors in D D .
Let c1,c2,c3,c4 c_1, c_2, c_3, c_4 be the coefficients such that:
c1[1341]+c2[1450]+c3[39115]+c4[1473]=[1141] c_1 \begin{bmatrix} 1 \\ -3 \\ 4 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 4 \\ -5 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -3 \\ 9 \\ -11 \\ -5 \end{bmatrix} + c_4 \begin{bmatrix} 1 \\ -4 \\ 7 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \\ -1 \end{bmatrix}
Solve the system of equations to find c1,c2,c3,c4 c_1, c_2, c_3, c_4 .

STEP 5

Solve the system of equations:
1. c1c23c3+c4=1 c_1 - c_2 - 3c_3 + c_4 = 1
2. 3c1+4c2+9c34c4=1 -3c_1 + 4c_2 + 9c_3 - 4c_4 = 1
3. 4c15c211c3+7c4=4 4c_1 - 5c_2 - 11c_3 + 7c_4 = 4
4. c1+0c25c33c4=1 c_1 + 0c_2 - 5c_3 - 3c_4 = -1

Use methods such as substitution or matrix row reduction to solve for c1,c2,c3,c4 c_1, c_2, c_3, c_4 .

STEP 6

After solving, assume the solution is c1=a,c2=b,c3=c,c4=d c_1 = a, c_2 = b, c_3 = c, c_4 = d .
Substitute these values into the matrix MDB(T) M_{DB}(T) as the first column.

STEP 7

Repeat Steps 1-4 for the remaining basis vectors of B B .
Calculate the image of the second basis vector [222] \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix} and express it in terms of D D .
Calculate the image of the third basis vector [043] \begin{bmatrix} 0 \\ -4 \\ 3 \end{bmatrix} and express it in terms of D D .

STEP 8

Construct the matrix MDB(T) M_{DB}(T) using the coefficients obtained from the linear combinations for each basis vector.
The matrix will be:
MDB(T)=[a1a2a3b1b2b3c1c2c3d1d2d3] M_{DB}(T) = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{bmatrix}
where each column corresponds to the coefficients from the linear combinations of each basis vector in B B .
The matrix MDB(T) M_{DB}(T) is:
[a1a2a3b1b2b3c1c2c3d1d2d3] \boxed{\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{bmatrix}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord