Math  /  Algebra

QuestionSuppose f(x)=x1xf(x)=\frac{x-1}{x} and g(x)=11xg(x)=\frac{1}{1-x}
Then (fg)(x)=(f \circ g)(x)= \square , and (gf)(x)=(g \circ f)(x)= \square . Remarkable!

Studdy Solution

STEP 1

1. The composition of functions (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x) requires substituting one function into the other.
2. The function f(x)=x1xf(x) = \frac{x-1}{x} and g(x)=11xg(x) = \frac{1}{1-x} must be substituted and simplified.
3. The domain restrictions of f(x)f(x) and g(x)g(x) need to be considered to ensure valid operations.

STEP 2

1. Compute (fg)(x)(f \circ g)(x) by substituting g(x)g(x) into f(x)f(x).
2. Simplify the expression for (fg)(x)(f \circ g)(x).
3. Compute (gf)(x)(g \circ f)(x) by substituting f(x)f(x) into g(x)g(x).
4. Simplify the expression for (gf)(x)(g \circ f)(x).

STEP 3

Substitute g(x)g(x) into f(x)f(x) to find (fg)(x)(f \circ g)(x).
(fg)(x)=f(g(x))=f(11x) (f \circ g)(x) = f(g(x)) = f\left(\frac{1}{1-x}\right)

STEP 4

Using the definition of f(x)f(x), substitute 11x\frac{1}{1-x} for xx in f(x)f(x).
f(11x)=11x111x f\left(\frac{1}{1-x}\right) = \frac{\frac{1}{1-x} - 1}{\frac{1}{1-x}}

STEP 5

Simplify the numerator of the fraction.
11x111x=1(1x)1x11x=x1x11x \frac{\frac{1}{1-x} - 1}{\frac{1}{1-x}} = \frac{\frac{1-(1-x)}{1-x}}{\frac{1}{1-x}} = \frac{\frac{x}{1-x}}{\frac{1}{1-x}}

STEP 6

Simplify the overall fraction.
x1x11x=x \frac{\frac{x}{1-x}}{\frac{1}{1-x}} = x

STEP 7

Substitute f(x)f(x) into g(x)g(x) to find (gf)(x)(g \circ f)(x).
(gf)(x)=g(f(x))=g(x1x) (g \circ f)(x) = g(f(x)) = g\left(\frac{x-1}{x}\right)

STEP 8

Using the definition of g(x)g(x), substitute x1x\frac{x-1}{x} for xx in g(x)g(x).
g(x1x)=11x1x g\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}}

STEP 9

Simplify the denominator of the fraction.
11x1x=1x(x1)x=1xx+1x=11x \frac{1}{1 - \frac{x-1}{x}} = \frac{1}{\frac{x - (x-1)}{x}} = \frac{1}{\frac{x - x + 1}{x}} = \frac{1}{\frac{1}{x}}

STEP 10

Simplify the overall fraction.
11x=x \frac{1}{\frac{1}{x}} = x
Solution: (fg)(x)=x (f \circ g)(x) = x (gf)(x)=x (g \circ f)(x) = x

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord