Math  /  Algebra

QuestionSuppose f(x)=8xf(x)=8^{x}. a) What is the domain of f1(x)f^{-1}(x) ? Enter your answer using interval notation. 1 [] U \infty π\pi aa^{\circ} aba^{b} a\sqrt{a} \square sin\sin \square Previev Invalid Inpu b) What is the range of f1(x)f^{-1}(x) ? Enter your answer using interval notation.

Studdy Solution

STEP 1

1. The function f(x)=8x f(x) = 8^x is an exponential function.
2. The inverse function f1(x) f^{-1}(x) will reverse the roles of the input and output of f(x) f(x) .
3. The domain of a function is the set of all possible input values.
4. The range of a function is the set of all possible output values.
5. The domain of f(x) f(x) is (,) (-\infty, \infty) because an exponential function is defined for all real numbers.
6. The range of f(x) f(x) is (0,) (0, \infty) because an exponential function with a positive base never equals zero or a negative number.

STEP 2

1. Determine the domain of f1(x) f^{-1}(x) .
2. Determine the range of f1(x) f^{-1}(x) .

STEP 3

Recall that the domain of the inverse function f1(x) f^{-1}(x) is the range of the original function f(x) f(x) .
Since f(x)=8x f(x) = 8^x , the range of f(x) f(x) is (0,) (0, \infty) .
Therefore, the domain of f1(x) f^{-1}(x) is (0,) (0, \infty) .
Domain of f1(x)=(0,) \text{Domain of } f^{-1}(x) = (0, \infty)

STEP 4

Recall that the range of the inverse function f1(x) f^{-1}(x) is the domain of the original function f(x) f(x) .
Since the domain of f(x) f(x) is (,) (-\infty, \infty) ,
the range of f1(x) f^{-1}(x) is (,) (-\infty, \infty) .
Range of f1(x)=(,) \text{Range of } f^{-1}(x) = (-\infty, \infty)
Solution: a) The domain of f1(x) f^{-1}(x) is (0,) (0, \infty) . b) The range of f1(x) f^{-1}(x) is (,) (-\infty, \infty) .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord