Math  /  Trigonometry

Questionsin(π3π4)2sin(4π123π12)\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)-2 \sin \left(\frac{4 \pi}{12}-\frac{3 \pi}{12}\right) \rightarrow
Simplify and then give an exact value for each expression. a) cos25cos5sin25sin5\cos 25^{\circ} \cos 5^{\circ}-\sin 25^{\circ} \sin 5^{\circ} cos25cos5sin25sin5cos(25+5)8cos(30)32\begin{array}{l} \cos 25^{\circ} \cos 5^{\circ}-\sin 25^{\circ} \sin 5^{\circ} \\ \Rightarrow \cos (25+5)-8 \cos \left(30^{\circ}\right) \rightarrow \frac{\sqrt{3}}{2} \end{array} d) cos7π12cosπ3+sin7π12sinπ3\cos \frac{7 \pi}{12} \cos \frac{\pi}{3}+\sin \frac{7 \pi}{12} \sin \frac{\pi}{3}

Studdy Solution

STEP 1

1. We are simplifying trigonometric expressions using angle sum and difference identities.
2. We will use known exact values for trigonometric functions at specific angles.
3. The problem involves multiple parts, each requiring separate simplification.

STEP 2

1. Simplify the expression sin(π3π4)2sin(4π123π12)\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)-2 \sin \left(\frac{4 \pi}{12}-\frac{3 \pi}{12}\right).
2. Simplify and find the exact value for expression (a).
3. Simplify and find the exact value for expression (d).

STEP 3

Simplify sin(π3π4)\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right) using the sine difference identity:
sin(π3π4)=sinπ3cosπ4cosπ3sinπ4\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right) = \sin \frac{\pi}{3} \cos \frac{\pi}{4} - \cos \frac{\pi}{3} \sin \frac{\pi}{4}
Substitute the known values:
=(32)(22)(12)(22)=6424=624= \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}

STEP 4

Simplify 2sin(4π123π12)2 \sin \left(\frac{4 \pi}{12}-\frac{3 \pi}{12}\right):
2sin(π3π4)=2(624)=6222 \sin \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = 2 \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right) = \frac{\sqrt{6} - \sqrt{2}}{2}

STEP 5

Combine the results:
624622=6242(62)4=624\frac{\sqrt{6} - \sqrt{2}}{4} - \frac{\sqrt{6} - \sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} - \frac{2(\sqrt{6} - \sqrt{2})}{4} = -\frac{\sqrt{6} - \sqrt{2}}{4}
Simplified result:
624-\frac{\sqrt{6} - \sqrt{2}}{4}

STEP 6

Simplify expression (a) using the cosine difference identity:
cos25cos5sin25sin5=cos(25+5)=cos30\cos 25^{\circ} \cos 5^{\circ} - \sin 25^{\circ} \sin 5^{\circ} = \cos(25^{\circ} + 5^{\circ}) = \cos 30^{\circ}
Exact value:
cos30=32\cos 30^{\circ} = \frac{\sqrt{3}}{2}

STEP 7

Simplify expression (d) using the cosine sum identity:
cos7π12cosπ3+sin7π12sinπ3=cos(7π12π3)\cos \frac{7 \pi}{12} \cos \frac{\pi}{3} + \sin \frac{7 \pi}{12} \sin \frac{\pi}{3} = \cos\left(\frac{7 \pi}{12} - \frac{\pi}{3}\right)
Calculate the angle:
7π12π3=7π124π12=3π12=π4\frac{7 \pi}{12} - \frac{\pi}{3} = \frac{7 \pi}{12} - \frac{4 \pi}{12} = \frac{3 \pi}{12} = \frac{\pi}{4}
Exact value:
cosπ4=22\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord