Questionsin(3π−4π)−2sin(124π−123π)→ Simplify and then give an exact value for each expression.
a) cos25∘cos5∘−sin25∘sin5∘cos25∘cos5∘−sin25∘sin5∘⇒cos(25+5)−8cos(30∘)→23
d) cos127πcos3π+sin127πsin3π
Studdy Solution
STEP 1
1. We are simplifying trigonometric expressions using angle sum and difference identities. 2. We will use known exact values for trigonometric functions at specific angles. 3. The problem involves multiple parts, each requiring separate simplification.
STEP 2
1. Simplify the expression sin(3π−4π)−2sin(124π−123π). 2. Simplify and find the exact value for expression (a). 3. Simplify and find the exact value for expression (d).
STEP 3
Simplify sin(3π−4π) using the sine difference identity: sin(3π−4π)=sin3πcos4π−cos3πsin4π Substitute the known values: =(23)(22)−(21)(22)=46−42=46−2
Combine the results: 46−2−26−2=46−2−42(6−2)=−46−2 Simplified result: −46−2
STEP 6
Simplify expression (a) using the cosine difference identity: cos25∘cos5∘−sin25∘sin5∘=cos(25∘+5∘)=cos30∘ Exact value: cos30∘=23
STEP 7
Simplify expression (d) using the cosine sum identity: cos127πcos3π+sin127πsin3π=cos(127π−3π) Calculate the angle: 127π−3π=127π−124π=123π=4π Exact value: cos4π=22
Was this helpful?
Get Studdy
Scan QR code with your device to get Studdy on iOS or Android
Studdy solves anything!
Download the app
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.