Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

sec(1z)tan(1z)dz\int \sec (1-z) \tan (1-z) d z Please solve for this probl

STEP 1

1. The integral involves the functions sec(1z)\sec(1-z) and tan(1z)\tan(1-z), which are trigonometric functions.
2. We need to recognize that the integral of sec(u)tan(u)\sec(u) \tan(u) with respect to uu is a standard integral.
3. We'll use a substitution method to simplify the integral.

STEP 2

1. Perform a substitution to simplify the integral.
2. Integrate with respect to the new variable.
3. Substitute back to the original variable.

STEP 3

Let u=1zu = 1 - z. Then, du=dzdu = -dz.
dz=du dz = -du

STEP 4

Substitute u=1zu = 1 - z and dz=dudz = -du into the integral.
sec(1z)tan(1z)dz=sec(u)tan(u)(du) \int \sec(1-z) \tan(1-z) \, dz = \int \sec(u) \tan(u) \, (-du)

STEP 5

Rewrite the integral with the negative sign factored out.
sec(u)tan(u)(du)=sec(u)tan(u)du \int \sec(u) \tan(u) \, (-du) = -\int \sec(u) \tan(u) \, du

STEP 6

Recognize that the integral of sec(u)tan(u)\sec(u) \tan(u) with respect to uu is a standard integral.
sec(u)tan(u)du=sec(u)+C \int \sec(u) \tan(u) \, du = \sec(u) + C

STEP 7

Apply the result to our integral.
sec(u)tan(u)du=sec(u)+C -\int \sec(u) \tan(u) \, du = -\sec(u) + C

SOLUTION

Substitute back u=1zu = 1 - z.
sec(u)+C=sec(1z)+C -\sec(u) + C = -\sec(1 - z) + C Therefore, the solution to the integral is:
sec(1z)tan(1z)dz=sec(1z)+C \int \sec(1-z) \tan(1-z) \, dz = -\sec(1 - z) + C

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord