Math  /  Calculus

Questionsec(1z)tan(1z)dz\int \sec (1-z) \tan (1-z) d z
Please solve for this probl

Studdy Solution

STEP 1

1. The integral involves the functions sec(1z)\sec(1-z) and tan(1z)\tan(1-z), which are trigonometric functions.
2. We need to recognize that the integral of sec(u)tan(u)\sec(u) \tan(u) with respect to uu is a standard integral.
3. We'll use a substitution method to simplify the integral.

STEP 2

1. Perform a substitution to simplify the integral.
2. Integrate with respect to the new variable.
3. Substitute back to the original variable.

STEP 3

Let u=1zu = 1 - z. Then, du=dzdu = -dz.
dz=du dz = -du

STEP 4

Substitute u=1zu = 1 - z and dz=dudz = -du into the integral.
sec(1z)tan(1z)dz=sec(u)tan(u)(du) \int \sec(1-z) \tan(1-z) \, dz = \int \sec(u) \tan(u) \, (-du)

STEP 5

Rewrite the integral with the negative sign factored out.
sec(u)tan(u)(du)=sec(u)tan(u)du \int \sec(u) \tan(u) \, (-du) = -\int \sec(u) \tan(u) \, du

STEP 6

Recognize that the integral of sec(u)tan(u)\sec(u) \tan(u) with respect to uu is a standard integral.
sec(u)tan(u)du=sec(u)+C \int \sec(u) \tan(u) \, du = \sec(u) + C

STEP 7

Apply the result to our integral.
sec(u)tan(u)du=sec(u)+C -\int \sec(u) \tan(u) \, du = -\sec(u) + C

STEP 8

Substitute back u=1zu = 1 - z.
sec(u)+C=sec(1z)+C -\sec(u) + C = -\sec(1 - z) + C
Therefore, the solution to the integral is:
sec(1z)tan(1z)dz=sec(1z)+C \int \sec(1-z) \tan(1-z) \, dz = -\sec(1 - z) + C

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord