Math  /  Calculus

QuestionScore Part IV Find the dyd y. ( 5 scores per question. The total is 10 scores.)
15. y=sin(tanx+cosx)y=\sin (\tan x+\cos x).
16. eyx2y=0e^{y}-x^{2} y=0.

Studdy Solution

STEP 1

Assumptions
1. We need to find the differential dydy for each given function.
2. For problem 15, the function is y=sin(tanx+cosx)y = \sin(\tan x + \cos x).
3. For problem 16, the function is implicitly defined by the equation eyx2y=0e^y - x^2 y = 0.
4. We will use differentiation techniques, such as the chain rule and implicit differentiation, to find dydy.

STEP 2

For problem 15, we will differentiate y=sin(tanx+cosx)y = \sin(\tan x + \cos x) with respect to xx.

STEP 3

Apply the chain rule to differentiate y=sin(tanx+cosx)y = \sin(\tan x + \cos x).
dydx=cos(tanx+cosx)ddx(tanx+cosx) \frac{dy}{dx} = \cos(\tan x + \cos x) \cdot \frac{d}{dx}(\tan x + \cos x)

STEP 4

Differentiate the inner function tanx+cosx\tan x + \cos x with respect to xx.
ddx(tanx+cosx)=sec2xsinx \frac{d}{dx}(\tan x + \cos x) = \sec^2 x - \sin x

STEP 5

Substitute the derivative of the inner function back into the chain rule expression.
dydx=cos(tanx+cosx)(sec2xsinx) \frac{dy}{dx} = \cos(\tan x + \cos x) \cdot (\sec^2 x - \sin x)

STEP 6

Express dydy in terms of dxdx.
dy=cos(tanx+cosx)(sec2xsinx)dx dy = \cos(\tan x + \cos x) \cdot (\sec^2 x - \sin x) \, dx

STEP 7

For problem 16, we will use implicit differentiation on the equation eyx2y=0e^y - x^2 y = 0.

STEP 8

Differentiate both sides of the equation eyx2y=0e^y - x^2 y = 0 with respect to xx.
ddx(ey)ddx(x2y)=0 \frac{d}{dx}(e^y) - \frac{d}{dx}(x^2 y) = 0

STEP 9

Apply the chain rule to differentiate eye^y.
ddx(ey)=eydydx \frac{d}{dx}(e^y) = e^y \cdot \frac{dy}{dx}

STEP 10

Apply the product rule to differentiate x2yx^2 y.
ddx(x2y)=x2dydx+2xy \frac{d}{dx}(x^2 y) = x^2 \cdot \frac{dy}{dx} + 2x \cdot y

STEP 11

Substitute the derivatives back into the differentiated equation.
eydydx(x2dydx+2xy)=0 e^y \cdot \frac{dy}{dx} - (x^2 \cdot \frac{dy}{dx} + 2x \cdot y) = 0

STEP 12

Rearrange the equation to solve for dydx\frac{dy}{dx}.
eydydxx2dydx=2xy e^y \cdot \frac{dy}{dx} - x^2 \cdot \frac{dy}{dx} = 2x \cdot y

STEP 13

Factor out dydx\frac{dy}{dx} from the left side of the equation.
(eyx2)dydx=2xy (e^y - x^2) \cdot \frac{dy}{dx} = 2x \cdot y

STEP 14

Solve for dydx\frac{dy}{dx}.
dydx=2xyeyx2 \frac{dy}{dx} = \frac{2x \cdot y}{e^y - x^2}

STEP 15

Express dydy in terms of dxdx.
dy=2xyeyx2dx dy = \frac{2x \cdot y}{e^y - x^2} \, dx
Solution for problem 15: dy=cos(tanx+cosx)(sec2xsinx)dx dy = \cos(\tan x + \cos x) \cdot (\sec^2 x - \sin x) \, dx
Solution for problem 16: dy=2xyeyx2dx dy = \frac{2x \cdot y}{e^y - x^2} \, dx

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord