Math  /  Algebra

QuestionRationalize the denominator and simplify: 5a5\frac{\sqrt{5}}{a-\sqrt{5}} 1a-\frac{1}{a} 5a+5a25\frac{\sqrt{5} a+\sqrt{5}}{a^{2}-5} a+5a+\sqrt{5} 5a+5a25\frac{\sqrt{5} a+5}{a^{2}-5}

Studdy Solution

STEP 1

1. We need to rationalize the denominator of the expression 5a5\frac{\sqrt{5}}{a-\sqrt{5}}.
2. Rationalizing involves eliminating the square root from the denominator.
3. We will use the conjugate of the denominator to rationalize.

STEP 2

1. Identify the conjugate of the denominator.
2. Multiply the numerator and the denominator by the conjugate.
3. Simplify the resulting expression.

STEP 3

Identify the conjugate of the denominator a5a - \sqrt{5}. The conjugate is a+5a + \sqrt{5}.

STEP 4

Multiply both the numerator and the denominator by the conjugate a+5a + \sqrt{5}:
5a5×a+5a+5=5(a+5)(a5)(a+5)\frac{\sqrt{5}}{a-\sqrt{5}} \times \frac{a+\sqrt{5}}{a+\sqrt{5}} = \frac{\sqrt{5}(a+\sqrt{5})}{(a-\sqrt{5})(a+\sqrt{5})}

STEP 5

Simplify the denominator using the difference of squares formula:
(a5)(a+5)=a2(5)2=a25(a-\sqrt{5})(a+\sqrt{5}) = a^2 - (\sqrt{5})^2 = a^2 - 5

STEP 6

Simplify the numerator:
5(a+5)=5a+5\sqrt{5}(a+\sqrt{5}) = \sqrt{5}a + 5

STEP 7

Combine the simplified numerator and denominator:
5a+5a25\frac{\sqrt{5}a + 5}{a^2 - 5}
The rationalized and simplified expression is:
5a+5a25\frac{\sqrt{5}a + 5}{a^2 - 5}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord