Math  /  Calculus

QuestionRates of Change Assignment
1. Determine the average rate of change of yy in the function y=2x3+7x2+2x3y=2 x^{3}+7 x^{2}+2 x-3 over the interval [3, 5]. [5 marks]

Studdy Solution

STEP 1

1. The function given is y=2x3+7x2+2x3 y = 2x^3 + 7x^2 + 2x - 3 .
2. The average rate of change of a function over an interval [a,b][a, b] is given by the formula: y(b)y(a)ba\frac{y(b) - y(a)}{b - a}.
3. The interval for this problem is [3,5][3, 5].

STEP 2

1. Evaluate the function y y at the endpoints of the interval, x=3 x = 3 and x=5 x = 5 .
2. Use the values obtained to calculate the average rate of change using the formula y(5)y(3)53\frac{y(5) - y(3)}{5 - 3}.

STEP 3

Evaluate the function y y at x=3 x = 3 .
y(3)=2(3)3+7(3)2+2(3)3 y(3) = 2(3)^3 + 7(3)^2 + 2(3) - 3
Simplify the expression to find y(3) y(3) .
y(3)=2(27)+7(9)+63 y(3) = 2(27) + 7(9) + 6 - 3 y(3)=54+63+63 y(3) = 54 + 63 + 6 - 3 y(3)=120 y(3) = 120

STEP 4

Evaluate the function y y at x=5 x = 5 .
y(5)=2(5)3+7(5)2+2(5)3 y(5) = 2(5)^3 + 7(5)^2 + 2(5) - 3
Simplify the expression to find y(5) y(5) .
y(5)=2(125)+7(25)+103 y(5) = 2(125) + 7(25) + 10 - 3 y(5)=250+175+103 y(5) = 250 + 175 + 10 - 3 y(5)=432 y(5) = 432

STEP 5

Calculate the average rate of change of y y over the interval [3,5][3, 5] using the formula y(5)y(3)53\frac{y(5) - y(3)}{5 - 3}.
Average Rate of Change=y(5)y(3)53=43212053 \text{Average Rate of Change} = \frac{y(5) - y(3)}{5 - 3} = \frac{432 - 120}{5 - 3} Average Rate of Change=3122=156 \text{Average Rate of Change} = \frac{312}{2} = 156
In conclusion, the average rate of change of y y in the function y=2x3+7x2+2x3 y = 2x^3 + 7x^2 + 2x - 3 over the interval [3,5][3, 5] is:
156 156

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord