Math  /  Trigonometry

QuestionQuestion If cosy=56\cos y=\frac{5}{6}, then what is the positive value of tan12y\tan \frac{1}{2} y, in simplest radical form with a rational denominator?

Studdy Solution

STEP 1

1. We are given cosy=56\cos y = \frac{5}{6}.
2. We need to find the positive value of tan12y\tan \frac{1}{2} y.
3. We will use trigonometric identities to find tan12y\tan \frac{1}{2} y.

STEP 2

1. Use the identity for sin2y+cos2y=1\sin^2 y + \cos^2 y = 1 to find siny\sin y.
2. Use the half-angle identity for tangent to find tan12y\tan \frac{1}{2} y.
3. Simplify the expression to get the answer in simplest radical form with a rational denominator.

STEP 3

Use the Pythagorean identity sin2y+cos2y=1\sin^2 y + \cos^2 y = 1 to find siny\sin y.
Given cosy=56\cos y = \frac{5}{6}, we have:
sin2y+(56)2=1\sin^2 y + \left(\frac{5}{6}\right)^2 = 1
sin2y+2536=1\sin^2 y + \frac{25}{36} = 1
Subtract 2536\frac{25}{36} from both sides:
sin2y=12536\sin^2 y = 1 - \frac{25}{36}
Convert 1 to 3636\frac{36}{36} to have a common denominator:
sin2y=36362536\sin^2 y = \frac{36}{36} - \frac{25}{36}
sin2y=1136\sin^2 y = \frac{11}{36}
Take the square root of both sides to find siny\sin y:
siny=±1136\sin y = \pm \sqrt{\frac{11}{36}}
siny=±116\sin y = \pm \frac{\sqrt{11}}{6}
Assume siny\sin y is positive, then:
siny=116\sin y = \frac{\sqrt{11}}{6}

STEP 4

Use the half-angle identity for tangent:
tan12y=±1cosy1+cosy\tan \frac{1}{2} y = \pm \sqrt{\frac{1 - \cos y}{1 + \cos y}}
Substitute cosy=56\cos y = \frac{5}{6}:
tan12y=±1561+56\tan \frac{1}{2} y = \pm \sqrt{\frac{1 - \frac{5}{6}}{1 + \frac{5}{6}}}
Simplify the expression:
tan12y=±16116\tan \frac{1}{2} y = \pm \sqrt{\frac{\frac{1}{6}}{\frac{11}{6}}}
tan12y=±111\tan \frac{1}{2} y = \pm \sqrt{\frac{1}{11}}
tan12y=±111\tan \frac{1}{2} y = \pm \frac{1}{\sqrt{11}}
Rationalize the denominator:
tan12y=±111×1111\tan \frac{1}{2} y = \pm \frac{1}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}
tan12y=±1111\tan \frac{1}{2} y = \pm \frac{\sqrt{11}}{11}
Since we are looking for the positive value:
tan12y=1111\tan \frac{1}{2} y = \frac{\sqrt{11}}{11}
The positive value of tan12y\tan \frac{1}{2} y is:
1111\boxed{\frac{\sqrt{11}}{11}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord