Math  /  Algebra

QuestionQuestion 5 of 18 This test: 18 point(s) possible This question: 1 point(s) possible
Use the figure to evaluate a+b,ab\mathbf{a}+\mathbf{b}, \mathbf{a}-\mathbf{b}, and a-\mathbf{a} a+b=,ab=,a=,\begin{array}{c} \mathrm{a}+\mathrm{b}=\langle\square, \square\rangle \\ \mathrm{a}-\mathrm{b}=\langle\square, \square\rangle \\ -\mathbf{a}=\langle\square, \square\rangle \end{array}

Studdy Solution

STEP 1

1. Vectors a\mathbf{a} and b\mathbf{b} are given in component form based on their terminal points.
2. Vector addition and subtraction follow the rules of adding and subtracting corresponding components.
3. Negating a vector involves negating each of its components.

STEP 2

1. Determine the components of vectors a\mathbf{a} and b\mathbf{b}.
2. Calculate a+b\mathbf{a} + \mathbf{b}.
3. Calculate ab\mathbf{a} - \mathbf{b}.
4. Calculate a-\mathbf{a}.

STEP 3

Identify the components of vectors a\mathbf{a} and b\mathbf{b} from the given points: - a=3,2\mathbf{a} = \langle 3, 2 \rangle - b=1,4\mathbf{b} = \langle 1, 4 \rangle

STEP 4

Calculate a+b\mathbf{a} + \mathbf{b} by adding the corresponding components of a\mathbf{a} and b\mathbf{b}: a+b=3+1,2+4=4,6 \mathbf{a} + \mathbf{b} = \langle 3 + 1, 2 + 4 \rangle = \langle 4, 6 \rangle

STEP 5

Calculate ab\mathbf{a} - \mathbf{b} by subtracting the corresponding components of b\mathbf{b} from a\mathbf{a}: ab=31,24=2,2 \mathbf{a} - \mathbf{b} = \langle 3 - 1, 2 - 4 \rangle = \langle 2, -2 \rangle

STEP 6

Calculate a-\mathbf{a} by negating each component of a\mathbf{a}: a=3,2 -\mathbf{a} = \langle -3, -2 \rangle
The evaluated vectors are: a+b=4,6\mathbf{a} + \mathbf{b} = \langle 4, 6 \rangle ab=2,2\mathbf{a} - \mathbf{b} = \langle 2, -2 \rangle a=3,2-\mathbf{a} = \langle -3, -2 \rangle

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord