Math  /  Algebra

Question- Question 3
1 point Number Help
Find <5uˉ,5vˉ+2wˉ><5 \bar{u}, 5 \bar{v}+2 \bar{w}>, given that <uˉ,vˉ>=4,<vˉ,wˉ>=5<\bar{u}, \bar{v}>=4,<\bar{v}, \bar{w}>=-5, and <uˉ,wˉ>=2<\bar{u}, \bar{w}>=-2 Number

Studdy Solution

STEP 1

1. The notation <aˉ,bˉ> <\bar{a}, \bar{b}> represents the dot product of vectors aˉ \bar{a} and bˉ \bar{b} .
2. We are given the dot products <uˉ,vˉ>=4 <\bar{u}, \bar{v}> = 4 , <vˉ,wˉ>=5 <\bar{v}, \bar{w}> = -5 , and <uˉ,wˉ>=2 <\bar{u}, \bar{w}> = -2 .
3. We need to find the dot product <5uˉ,5vˉ+2wˉ> <5 \bar{u}, 5 \bar{v} + 2 \bar{w}> .

STEP 2

1. Distribute the dot product over vector addition.
2. Use the scalar multiplication property of dot products.
3. Substitute the given dot products and simplify.

STEP 3

Distribute the dot product over the addition of vectors:
<5uˉ,5vˉ+2wˉ>=<5uˉ,5vˉ>+<5uˉ,2wˉ> <5 \bar{u}, 5 \bar{v} + 2 \bar{w}> = <5 \bar{u}, 5 \bar{v}> + <5 \bar{u}, 2 \bar{w}>

STEP 4

Apply the scalar multiplication property of dot products:
<5uˉ,5vˉ>=55<uˉ,vˉ> <5 \bar{u}, 5 \bar{v}> = 5 \cdot 5 \cdot <\bar{u}, \bar{v}> <5uˉ,2wˉ>=52<uˉ,wˉ> <5 \bar{u}, 2 \bar{w}> = 5 \cdot 2 \cdot <\bar{u}, \bar{w}>

STEP 5

Substitute the given values of the dot products:
<5uˉ,5vˉ>=254=100 <5 \bar{u}, 5 \bar{v}> = 25 \cdot 4 = 100 <5uˉ,2wˉ>=10(2)=20 <5 \bar{u}, 2 \bar{w}> = 10 \cdot (-2) = -20

STEP 6

Add the results from the previous step:
<5uˉ,5vˉ+2wˉ>=100+(20)=80 <5 \bar{u}, 5 \bar{v} + 2 \bar{w}> = 100 + (-20) = 80
The value of the dot product is:
80 \boxed{80}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord