Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

Q4) Find the differential equation whose general solution y=Acos(lnx)+Bsin(lnx),x>0y=A \cos (\ln x)+B \sin (\ln x), x>0.

STEP 1

1. The given general solution is y=Acos(lnx)+Bsin(lnx) y = A \cos (\ln x) + B \sin (\ln x) .
2. We need to find a differential equation that has this general solution.
3. A A and B B are arbitrary constants.
4. x>0 x > 0 ensures that lnx\ln x is defined.

STEP 2

1. Differentiate the given general solution with respect to x x .
2. Differentiate again to obtain the second derivative.
3. Eliminate the arbitrary constants A A and B B to form the differential equation.

STEP 3

Differentiate the given general solution y=Acos(lnx)+Bsin(lnx) y = A \cos (\ln x) + B \sin (\ln x) with respect to x x .
Using the chain rule, we have:
dydx=ddx[Acos(lnx)+Bsin(lnx)] \frac{dy}{dx} = \frac{d}{dx}[A \cos (\ln x) + B \sin (\ln x)] dydx=Addx[cos(lnx)]+Bddx[sin(lnx)] \frac{dy}{dx} = A \cdot \frac{d}{dx}[\cos (\ln x)] + B \cdot \frac{d}{dx}[\sin (\ln x)] Using the chain rule for derivatives, we get:
ddx[cos(lnx)]=sin(lnx)1x \frac{d}{dx}[\cos (\ln x)] = -\sin (\ln x) \cdot \frac{1}{x} ddx[sin(lnx)]=cos(lnx)1x \frac{d}{dx}[\sin (\ln x)] = \cos (\ln x) \cdot \frac{1}{x} Thus:
dydx=A(sin(lnx)x)+B(cos(lnx)x) \frac{dy}{dx} = A \left(-\frac{\sin (\ln x)}{x}\right) + B \left(\frac{\cos (\ln x)}{x}\right) dydx=Asin(lnx)x+Bcos(lnx)x \frac{dy}{dx} = -\frac{A \sin (\ln x)}{x} + \frac{B \cos (\ln x)}{x}

STEP 4

Differentiate dydx\frac{dy}{dx} again with respect to x x to obtain the second derivative.
d2ydx2=ddx(Asin(lnx)x+Bcos(lnx)x) \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{A \sin (\ln x)}{x} + \frac{B \cos (\ln x)}{x}\right) Apply the product rule and chain rule:
ddx(Asin(lnx)x)=A(ddx(sin(lnx)x)) \frac{d}{dx}\left(-\frac{A \sin (\ln x)}{x}\right) = -A \left(\frac{d}{dx}\left(\frac{\sin (\ln x)}{x}\right)\right) ddx(sin(lnx)x)=xcos(lnx)1xsin(lnx)x2 \frac{d}{dx}\left(\frac{\sin (\ln x)}{x}\right) = \frac{x \cdot \cos (\ln x) \cdot \frac{1}{x} - \sin (\ln x)}{x^2} =cos(lnx)sin(lnx)x2 = \frac{\cos (\ln x) - \sin (\ln x)}{x^2} Thus:
ddx(Asin(lnx)x)=A(cos(lnx)sin(lnx)x2) \frac{d}{dx}\left(-\frac{A \sin (\ln x)}{x}\right) = -A \left(\frac{\cos (\ln x) - \sin (\ln x)}{x^2}\right) Similarly, for the other term:
ddx(Bcos(lnx)x)=B(sin(lnx)cos(lnx)x2) \frac{d}{dx}\left(\frac{B \cos (\ln x)}{x}\right) = B \left(\frac{-\sin (\ln x) - \cos (\ln x)}{x^2}\right) Thus:
d2ydx2=A(cos(lnx)sin(lnx)x2)+B(sin(lnx)cos(lnx)x2) \frac{d^2y}{dx^2} = -A \left(\frac{\cos (\ln x) - \sin (\ln x)}{x^2}\right) + B \left(\frac{-\sin (\ln x) - \cos (\ln x)}{x^2}\right)

SOLUTION

Eliminate the arbitrary constants A A and B B to form the differential equation.
Notice that:
y=Acos(lnx)+Bsin(lnx) y = A \cos (\ln x) + B \sin (\ln x) dydx=Asin(lnx)x+Bcos(lnx)x \frac{dy}{dx} = -\frac{A \sin (\ln x)}{x} + \frac{B \cos (\ln x)}{x} d2ydx2=A(cos(lnx)sin(lnx))x2+B(sin(lnx)cos(lnx))x2 \frac{d^2y}{dx^2} = -\frac{A (\cos (\ln x) - \sin (\ln x))}{x^2} + \frac{B (-\sin (\ln x) - \cos (\ln x))}{x^2} To eliminate A A and B B , observe that the coefficients of cos(lnx)\cos (\ln x) and sin(lnx)\sin (\ln x) in the derivatives can be combined to form a differential equation.
The differential equation is:
x2d2ydx2+xdydx+y=0 x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0 The differential equation whose general solution is y=Acos(lnx)+Bsin(lnx) y = A \cos (\ln x) + B \sin (\ln x) is:
x2d2ydx2+xdydx+y=0 \boxed{x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0}

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord