Math  /  Algebra

QuestionPure Mathematics (2) The domain of the function f(x)=x225f(x)=\sqrt{x^{2}-25} is (a) R\mathbb{R} - {5}\{5\} (b) R]5,5[\mathbb{R}-]-5,5[ (c) ]5,5[]-5,5[ (3) Which of the following functions is an even function \qquad (d) [5,5][-5,5] (a) f(x)=x2+sin2xf(x)=x^{2}+\sin ^{2} x (b) f(x)=x+cosxf(x)=x+\cos x (c) f(x)=x3f(x)=x^{3} (d) f(x)=x4+sinxf(x)=x^{4}+\sin x (4) The opposite figure represents the curve of the function f(x)f(x) which of the following is true? (a) range of ff is ],[]-\infty, \infty[ (b) domain of ff is ]0,[] 0, \infty[ (c) ff is increasing on ]0,[] 0, \infty[ (d) ff is not one-to-one function (5) The solution set of the equation: 32x+12×3x+27=03^{2 x}+12 \times 3^{x}+27=0 in R\mathbb{R} is \qquad (a) {9,3}\{-9,-3\} (b) {1,2}\{1,2\} (c) {1,2}\{-1,-2\} (d) \varnothing (6) The solution set of the equation : 2x+6=x2|2 x+6|=\sqrt{x^{2}} in R\mathbb{R} is \qquad (a) {6,2}\{-6,-2\} (b) {6,2}\{6,2\} (c) {1,3}\{-1,3\} (d) \varnothing (7) The value of : log6log327=\log _{6} \log _{\sqrt{3}} 27= \qquad (a) -6 (b) -3 (c) 3 (d) 1 (8) 81x8y124=\sqrt[4]{81 x^{8} y^{12}}= \qquad (a) 3x2y33\left|x^{2}\right| y^{3} (b) 3x2y3|3| x^{2} y^{3} (c) 3x2y33 x^{2}\left|y^{3}\right| (d) 3x2y33 x^{2} y^{3} (9) If f(x)=12x6f(x)=\frac{1}{2} x-6, then f1(12)=f^{-1}(12)= \qquad (a) 6 (b) 12 (c) 24 (d) 36 (10) If logA=x,log B=y\log \mathrm{A}=x, \log \mathrm{~B}=\mathrm{y} where A>0, B>0\mathrm{A}>0, \mathrm{~B}>0, then logAB=\log \mathrm{AB}= \qquad (a) A+BA+B (b) x+yx+y (c) xyx_{y} (d) (X)y(X)^{y} (11) The intersection point of the curve of the function f(X)=3x+5f(X)=3^{x}+5 with yy-axis is (a) (1,0)(1,0) (b) (0,5)(0,5) (c) (0,6)(0,6) (d) (1,8)(1,8) (12) If log22x+log2x=5\log _{2} 2 x+\log _{2} x=5, then x=x= (a) 5 (b) ±5\pm 5 (c) 4 (d) ±4\pm 4 (13) The solution set of equation : (4)x3=(8)2x6(4)^{x-3}=(8)^{2 x-6} is \qquad (a) {3}\{3\} (b) {0}\{0\} (c) {4}\{4\} (d) {5}\{5\}

Studdy Solution

STEP 1

What is this asking? We need to solve a bunch of different math problems covering functions, equations, logarithms, and exponents. Watch out! It's easy to make small mistakes with signs or exponents, so let's be super careful with every step!

STEP 2

1. Domain of a Square Root Function
2. Even Function Identification
3. Function Properties from Graph
4. Exponential Equation
5. Absolute Value Equation
6. Logarithm Value
7. Simplifying a Radical Expression
8. Inverse Function
9. Logarithm of a Product
10. Y-Intercept of an Exponential Function
11. Logarithmic Equation
12. Exponential Equation with Different Bases

STEP 3

We want to find the **domain** of f(x)=x225f(x) = \sqrt{x^2 - 25}.
The expression inside a square root must be greater than or equal to zero.

STEP 4

So, we need x2250x^2 - 25 \ge 0.
This means x225x^2 \ge 25.

STEP 5

Taking the square root of both sides, we get x5|x| \ge 5.
This means x5x \ge 5 or x5x \le -5.

STEP 6

In interval notation, the domain is (,5][5,)(-\infty, -5] \cup [5, \infty), which is the same as R]5,5[\mathbb{R} - ]-5, 5[.
So the answer is (b).

STEP 7

An **even function** satisfies f(x)=f(x)f(-x) = f(x).
Let's check each option.

STEP 8

For (a), f(x)=(x)2+sin2(x)=x2+(sinx)2=x2+sin2x=f(x)f(-x) = (-x)^2 + \sin^2(-x) = x^2 + (-\sin x)^2 = x^2 + \sin^2 x = f(x).
So, (a) is even.

STEP 9

For (b), f(x)=x+cos(x)=x+cosxf(x)f(-x) = -x + \cos(-x) = -x + \cos x \ne f(x).
So (b) is not even.

STEP 10

For (c), f(x)=(x)3=x3f(x)f(-x) = (-x)^3 = -x^3 \ne f(x).
So (c) is not even.

STEP 11

For (d), f(x)=(x)4+sin(x)=x4sinxf(x)f(-x) = (-x)^4 + \sin(-x) = x^4 - \sin x \ne f(x).
So (d) is not even.

STEP 12

Therefore, the answer is (a).

STEP 13

Looking at the graph, we see the function is defined for all x>0x > 0, so the domain is ]0,[]0, \infty[.

STEP 14

The function is increasing as xx increases, so it's increasing on its domain ]0,[]0, \infty[.

STEP 15

The graph passes the horizontal line test, meaning it's a one-to-one function.

STEP 16

Therefore, the correct answer is (c).

STEP 17

Let y=3xy = 3^x.
Then the equation becomes y2+12y+27=0y^2 + 12y + 27 = 0.

STEP 18

Factoring, we get (y+3)(y+9)=0(y+3)(y+9) = 0, so y=3y = -3 or y=9y = -9.

STEP 19

Since 3x3^x is always positive, there's no real solution for xx.
The solution set is \varnothing, so the answer is (d).

STEP 20

We have 2x+6=x2=x|2x + 6| = \sqrt{x^2} = |x|.

STEP 21

Case 1: 2x+6=x2x + 6 = x.
Then x=6x = -6.

STEP 22

Case 2: 2x+6=x2x + 6 = -x.
Then 3x=63x = -6, so x=2x = -2.

STEP 23

The solution set is {6,2}\{-6, -2\}, so the answer is (a).

STEP 24

We have log6log327\log_6 \log_{\sqrt{3}} 27.

STEP 25

First, log327=log3(3)6=6\log_{\sqrt{3}} 27 = \log_{\sqrt{3}} (\sqrt{3})^6 = 6.

STEP 26

Then, log66=1\log_6 6 = 1.
So the answer is (d).

STEP 27

We have 81x8y124\sqrt[4]{81x^8y^{12}}.

STEP 28

This simplifies to 3x2y3=3x2y33|x^2||y^3| = 3x^2|y^3|.
The answer is (c).

STEP 29

Given f(x)=12x6f(x) = \frac{1}{2}x - 6, we want to find f1(12)f^{-1}(12).

STEP 30

Let y=f(x)y = f(x).
Then y=12x6y = \frac{1}{2}x - 6.

STEP 31

To find the inverse, swap xx and yy: x=12y6x = \frac{1}{2}y - 6.

STEP 32

Solving for yy, we get 2x=y122x = y - 12, so y=2x+12y = 2x + 12.
Thus, f1(x)=2x+12f^{-1}(x) = 2x + 12.

STEP 33

f1(12)=2(12)+12=36f^{-1}(12) = 2(12) + 12 = 36.
The answer is (d).

STEP 34

Given logA=x\log A = x and logB=y\log B = y, we want to find log(AB)\log(AB).

STEP 35

Using the logarithm property log(AB)=logA+logB\log(AB) = \log A + \log B, we have log(AB)=x+y\log(AB) = x + y.
The answer is (b).

STEP 36

The y-intercept occurs when x=0x = 0.

STEP 37

f(0)=30+5=1+5=6f(0) = 3^0 + 5 = 1 + 5 = 6.
So the y-intercept is (0,6)(0, 6).
The answer is (c).

STEP 38

We have log2(2x)+log2(x)=5\log_2(2x) + \log_2(x) = 5.

STEP 39

Using the logarithm property loga(b)+loga(c)=loga(bc)\log_a(b) + \log_a(c) = \log_a(bc), we get log2(2xx)=log2(2x2)=5\log_2(2x \cdot x) = \log_2(2x^2) = 5.

STEP 40

This means 2x2=25=322x^2 = 2^5 = 32, so x2=16x^2 = 16.
Thus, x=±4x = \pm 4.

STEP 41

Since we must have x>0x > 0 for the logarithm to be defined, the solution is x=4x = 4.
The answer is (c).

STEP 42

We have 4x3=82x64^{x-3} = 8^{2x-6}.

STEP 43

Rewrite both sides with base 2: (22)x3=(23)2x6(2^2)^{x-3} = (2^3)^{2x-6}.

STEP 44

This simplifies to 22x6=26x182^{2x-6} = 2^{6x-18}.

STEP 45

Therefore, 2x6=6x182x - 6 = 6x - 18, so 4x=124x = 12, and x=3x = 3.
The answer is (a).

STEP 46

(2) b, (3) a, (4) c, (5) d, (6) a, (7) d, (8) c, (9) d, (10) b, (11) c, (12) c, (13) a

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord