Math  /  Trigonometry

QuestionProve the identity (secθcosθ)(cscθsinθ)=tanθ1+tan2θ(\sec \theta-\cos \theta)(\csc \theta-\sin \theta)=\frac{\tan \theta}{1+\tan ^{2} \theta}

Studdy Solution

STEP 1

1. The identity involves trigonometric functions: secant, cosine, cosecant, sine, and tangent.
2. We will use trigonometric identities to simplify and prove the given identity.

STEP 2

1. Simplify the left-hand side (LHS) of the identity.
2. Simplify the right-hand side (RHS) of the identity.
3. Show that the simplified LHS equals the simplified RHS.

STEP 3

Start by expressing secθ\sec \theta and cscθ\csc \theta in terms of cosθ\cos \theta and sinθ\sin \theta:
secθ=1cosθ,cscθ=1sinθ\sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta}
Substitute these into the LHS:
(secθcosθ)(cscθsinθ)=(1cosθcosθ)(1sinθsinθ)(\sec \theta - \cos \theta)(\csc \theta - \sin \theta) = \left(\frac{1}{\cos \theta} - \cos \theta\right)\left(\frac{1}{\sin \theta} - \sin \theta\right)

STEP 4

Simplify the expression inside each parenthesis:
1cosθcosθ=1cos2θcosθ=sin2θcosθ\frac{1}{\cos \theta} - \cos \theta = \frac{1 - \cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}
1sinθsinθ=1sin2θsinθ=cos2θsinθ\frac{1}{\sin \theta} - \sin \theta = \frac{1 - \sin^2 \theta}{\sin \theta} = \frac{\cos^2 \theta}{\sin \theta}

STEP 5

Multiply the simplified expressions:
\left(\frac{\sin^2 \theta}{\cos \theta}\right)\left(\frac{\cos^2 \theta}{\sin \theta}\right) = \frac{\sin^2 \theta \cdot \cos^2 \theta}{\cos \theta \cdot \sin \theta} = \frac{\sin \theta \cdot \cos \theta}

STEP 6

Simplify the RHS of the identity:
tanθ1+tan2θ\frac{\tan \theta}{1 + \tan^2 \theta}
Recall the identity 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta, so:
tanθsec2θ=sinθ/cosθ1/cos2θ=sinθcosθ\frac{\tan \theta}{\sec^2 \theta} = \frac{\sin \theta / \cos \theta}{1 / \cos^2 \theta} = \sin \theta \cdot \cos \theta

STEP 7

Compare the simplified LHS and RHS:
Both simplify to sinθcosθ\sin \theta \cdot \cos \theta, thus proving the identity:
(secθcosθ)(cscθsinθ)=tanθ1+tan2θ(\sec \theta - \cos \theta)(\csc \theta - \sin \theta) = \frac{\tan \theta}{1 + \tan^2 \theta}
The identity is proven.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord