Math  /  Trigonometry

QuestionProb. 6 Compute the following exactly, without using a calculator. (a) arcsin(32)\arcsin \left(\frac{\sqrt{3}}{2}\right) (b) arccos(12)\arccos \left(-\frac{1}{2}\right) (c) arctan(1)\arctan (-1) (d) arccos(cos(π3))\arccos \left(\cos \left(\frac{\pi}{3}\right)\right) (e) arcsin(sin(2π3))\arcsin \left(\sin \left(\frac{2 \pi}{3}\right)\right) (Be careful on this one; the answer is not 2π3!\frac{2 \pi}{3}! ) (f) arctan(0.81)\arctan (0.81) (Okay, you can use your calculator on this one!)

Studdy Solution

STEP 1

1. We are working with inverse trigonometric functions: arcsin, arccos, and arctan.
2. We need to find exact values for parts (a) through (e) without using a calculator.
3. For part (f), we are allowed to use a calculator to approximate the value.

STEP 2

1. Solve for arcsin(32)\arcsin \left(\frac{\sqrt{3}}{2}\right).
2. Solve for arccos(12)\arccos \left(-\frac{1}{2}\right).
3. Solve for arctan(1)\arctan (-1).
4. Solve for arccos(cos(π3))\arccos \left(\cos \left(\frac{\pi}{3}\right)\right).
5. Solve for arcsin(sin(2π3))\arcsin \left(\sin \left(\frac{2 \pi}{3}\right)\right).
6. Approximate arctan(0.81)\arctan (0.81) using a calculator.

STEP 3

Recall that arcsin\arcsin gives the angle whose sine is the given value. We know that:
sin(π3)=32 \sin \left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}
Therefore:
arcsin(32)=π3 \arcsin \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}

STEP 4

Recall that arccos\arccos gives the angle whose cosine is the given value. We know that:
cos(2π3)=12 \cos \left(\frac{2\pi}{3}\right) = -\frac{1}{2}
Therefore:
arccos(12)=2π3 \arccos \left(-\frac{1}{2}\right) = \frac{2\pi}{3}

STEP 5

Recall that arctan\arctan gives the angle whose tangent is the given value. We know that:
tan(π4)=1 \tan \left(-\frac{\pi}{4}\right) = -1
Therefore:
arctan(1)=π4 \arctan (-1) = -\frac{\pi}{4}

STEP 6

The arccos\arccos function will return the principal value, which is the angle itself since cos\cos is a one-to-one function in the range [0,π][0, \pi]. Therefore:
arccos(cos(π3))=π3 \arccos \left(\cos \left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}

STEP 7

The arcsin\arcsin function will return the principal value, which must be in the range [π2,π2][- \frac{\pi}{2}, \frac{\pi}{2}]. We know:
sin(2π3)=sin(ππ3)=sin(π3)=32 \sin \left(\frac{2\pi}{3}\right) = \sin \left(\pi - \frac{\pi}{3}\right) = \sin \left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}
However, the principal value for arcsin(32)\arcsin\left(\frac{\sqrt{3}}{2}\right) is π3\frac{\pi}{3}, not 2π3\frac{2\pi}{3}. Therefore:
arcsin(sin(2π3))=π3 \arcsin \left(\sin \left(\frac{2\pi}{3}\right)\right) = \frac{\pi}{3}

STEP 8

Use a calculator to approximate:
arctan(0.81)0.68radians \arctan (0.81) \approx 0.68 \, \text{radians}
The solutions are: (a) π3\frac{\pi}{3} (b) 2π3\frac{2\pi}{3} (c) π4-\frac{\pi}{4} (d) π3\frac{\pi}{3} (e) π3\frac{\pi}{3} (f) 0.68\approx 0.68

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord