Math

QuestionEvaluate the following functions at x=3x=3: f(x)=x3f(x)=x-3, g(x)=x23x+5g(x)=x^{2}-3x+5, h(x)=x3+x+33h(x)=\sqrt[3]{x^{3}+x+3}, p(x)=x2+1x+4p(x)=\frac{x^{2}+1}{x+4}, f(x)=x5f(x)=|x-5|. Also, for f(x)=x+8f(x)=x+8, find f(4)f(4), f(2)f(-2), f(x)f(-x), f(x+3)f(x+3), and f(x2+x+1)f\left(x^{2}+x+1\right).

Studdy Solution

STEP 1

Assumptions1. The variable xx is a real number. . The functions are defined for the given values of xx.

STEP 2

Evaluate the function f(x)=xf(x)=x- at x=x=.
f()=f()=-

STEP 3

Calculate the value of f(3)f(3).
f(3)=33=0f(3)=3-3=0

STEP 4

Evaluate the function g(x)=x23x+g(x)=x^{2}-3x+ at x=3x=3.
g(3)=323(3)+g(3)=3^{2}-3(3)+

STEP 5

Calculate the value of g(3)g(3).
g(3)=323(3)+5=99+5=5g(3)=3^{2}-3(3)+5=9-9+5=5

STEP 6

Evaluate the function h(x)=x3+x+33h(x)=\sqrt[3]{x^{3}+x+3} at x=3x=3.
h(3)=33+3+33h(3)=\sqrt[3]{3^{3}+3+3}

STEP 7

Calculate the value of h(3)h(3).
h(3)=33+3+33=27+3+33=333h(3)=\sqrt[3]{3^{3}+3+3}=\sqrt[3]{27+3+3}=\sqrt[3]{33}

STEP 8

Evaluate the function p(x)=x2+1x+4p(x)=\frac{x^{2}+1}{x+4} at x=3x=3.
p(3)=32+13+4p(3)=\frac{3^{2}+1}{3+4}

STEP 9

Calculate the value of p(3)p(3).
p(3)=32+3+4=9+7=7p(3)=\frac{3^{2}+}{3+4}=\frac{9+}{7}=\frac{}{7}

STEP 10

Evaluate the function f(x)=x5f(x)=|x-5| at x=3x=3.
f(3)=35f(3)=|3-5|

STEP 11

Calculate the value of f(3)f(3).
f(3)=35==f(3)=|3-5|=|-|=

STEP 12

Evaluate the function f(x)=x+8f(x)=x+8 at x=4x=4.
f(4)=4+8f(4)=4+8

STEP 13

Calculate the value of f()f().
f()=+8=12f()=+8=12

STEP 14

Evaluate the function f(x)=x+8f(x)=x+8 at x=2x=-2.
f(2)=2+8f(-2)=-2+8

STEP 15

Calculate the value of f(2)f(-2).
f(2)=2+8=f(-2)=-2+8=

STEP 16

Evaluate the function f(x)=x+8f(x)=x+8 at x=xx=-x.
f(x)=x+8f(-x)=-x+8

STEP 17

Evaluate the function f(x)=x+f(x)=x+ at x=x+3x=x+3.
f(x+3)=(x+3)+f(x+3)=(x+3)+

STEP 18

implify the expression for f(x+3)f(x+3).
f(x+3)=x+11f(x+3)=x+11

STEP 19

Evaluate the function f(x)=x+8f(x)=x+8 at x=x+x+1x=x^{}+x+1.
f(x+x+1)=(x+x+1)+8f\left(x^{}+x+1\right)=(x^{}+x+1)+8

STEP 20

implify the expression for f(x+x+)f\left(x^{}+x+\right).
f(x+x+)=x+x+9f\left(x^{}+x+\right)=x^{}+x+9The answers are. f(3)=0f(3)=0 . g(3)=5g(3)=5
3. h(3)=333h(3)=\sqrt[3]{33}
4. p(3)=107p(3)=\frac{10}{7}
5. f(3)=f(3)=
6. f(4)=12f(4)=12
7. f()=6f(-)=6
8. f(x)=x+8f(-x)=-x+8
9. f(x+3)=x+11f(x+3)=x+11
10. f(x+x+)=x+x+9f\left(x^{}+x+\right)=x^{}+x+9

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord