Math  /  Algebra

QuestionPoints: 0 of 1
For the given functions, find (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x) and the domain of each. f(x)=813x,g(x)=1x(fg)(x)=8xx3\begin{array}{l} f(x)=\frac{8}{1-3 x}, g(x)=\frac{1}{x} \\ (f \circ g)(x)=\frac{8 x}{x-3} \end{array} (Simplify your answer. Use integers or fractions for any numbers in the expression.) (gf)(x)=(g \circ f)(x)= \square (Simplify your answer. Use integers or fractions for any numbers in the expression.)

Studdy Solution

STEP 1

1. We are given two functions f(x)=813x f(x) = \frac{8}{1-3x} and g(x)=1x g(x) = \frac{1}{x} .
2. We need to find the compositions (fg)(x) (f \circ g)(x) and (gf)(x) (g \circ f)(x) .
3. The domain of a composition is the set of all x x values for which the composition is defined.

STEP 2

1. Calculate (fg)(x) (f \circ g)(x) .
2. Determine the domain of (fg)(x) (f \circ g)(x) .
3. Calculate (gf)(x) (g \circ f)(x) .
4. Determine the domain of (gf)(x) (g \circ f)(x) .

STEP 3

To find (fg)(x) (f \circ g)(x) , substitute g(x) g(x) into f(x) f(x) :
(fg)(x)=f(g(x))=f(1x) (f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right)
Substitute 1x \frac{1}{x} into f(x) f(x) :
f(1x)=813(1x) f\left(\frac{1}{x}\right) = \frac{8}{1 - 3\left(\frac{1}{x}\right)}
Simplify the expression:
=813x = \frac{8}{1 - \frac{3}{x}}
Combine terms in the denominator:
=8x3x = \frac{8}{\frac{x - 3}{x}}
Simplify by multiplying by the reciprocal:
=8xx3=8xx3 = 8 \cdot \frac{x}{x-3} = \frac{8x}{x-3}

STEP 4

Determine the domain of (fg)(x)=8xx3 (f \circ g)(x) = \frac{8x}{x-3} :
1. g(x)=1x g(x) = \frac{1}{x} is defined for x0 x \neq 0 .
2. f(g(x))=8xx3 f(g(x)) = \frac{8x}{x-3} is defined for x3 x \neq 3 .

The domain of (fg)(x) (f \circ g)(x) is x0 x \neq 0 and x3 x \neq 3 .

STEP 5

To find (gf)(x) (g \circ f)(x) , substitute f(x) f(x) into g(x) g(x) :
(gf)(x)=g(f(x))=g(813x) (g \circ f)(x) = g(f(x)) = g\left(\frac{8}{1-3x}\right)
Substitute 813x \frac{8}{1-3x} into g(x) g(x) :
g(813x)=1813x g\left(\frac{8}{1-3x}\right) = \frac{1}{\frac{8}{1-3x}}
Simplify by multiplying by the reciprocal:
=13x8 = \frac{1-3x}{8}

STEP 6

Determine the domain of (gf)(x)=13x8 (g \circ f)(x) = \frac{1-3x}{8} :
1. f(x)=813x f(x) = \frac{8}{1-3x} is defined for 13x0 1-3x \neq 0 , which implies x13 x \neq \frac{1}{3} .
2. g(f(x))=13x8 g(f(x)) = \frac{1-3x}{8} is defined for all real numbers since there are no additional restrictions.

The domain of (gf)(x) (g \circ f)(x) is x13 x \neq \frac{1}{3} .
The compositions are: - (fg)(x)=8xx3 (f \circ g)(x) = \frac{8x}{x-3} with domain x0 x \neq 0 and x3 x \neq 3 . - (gf)(x)=13x8 (g \circ f)(x) = \frac{1-3x}{8} with domain x13 x \neq \frac{1}{3} .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord