Math

QuestionPoint BB divides segment AC\overline{AC} in a 1:31:3 ratio. Given A(4,7)A(-4,-7) and B(12,5)B(12,5), find coordinates of CC.

Studdy Solution

STEP 1

Assumptions1. Point BB partitions line segment AC\overline{AC} in the ratio 1313. . The coordinates of point AA are (4,7)(-4,-7).
3. The coordinates of point BB are (12,5)(12,5).
4. We need to find the coordinates of point CC.

STEP 2

We can use the section formula to find the coordinates of point CC. The section formula is given byC(x,y)=(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)C(x,y) = \left( \frac{m1x2 + m2x1}{m1 + m2}, \frac{m1y2 + m2y1}{m1 + m2} \right)where m1:m2m1:m2 is the given ratio, and (x1,y1)(x1,y1) and (x2,y2)(x2,y2) are the coordinates of points AA and BB respectively.

STEP 3

Now, plug in the given values for the ratio and the coordinates of points AA and BB to calculate the coordinates of point CC.
C(x,y)=(1()+3121+3,1(7)+351+3)C(x,y) = \left( \frac{1 \cdot (-) +3 \cdot12}{1 +3}, \frac{1 \cdot (-7) +3 \cdot5}{1 +3} \right)

STEP 4

Calculate the x-coordinate of point CC.
Cx=1(4)+3121+3=4+364=324=8C_x = \frac{1 \cdot (-4) +3 \cdot12}{1 +3} = \frac{-4 +36}{4} = \frac{32}{4} =8

STEP 5

Calculate the y-coordinate of point CC.
Cy=1(7)+351+3=7+154=84=2C_y = \frac{1 \cdot (-7) +3 \cdot5}{1 +3} = \frac{-7 +15}{4} = \frac{8}{4} =2

STEP 6

So, the coordinates of point CC are (8,2)(8,2).
The coordinates of point CC are (8,2)(8,2).

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord