Studdy Solution
STEP 1
Assumptions1. The operations are performed in the base specified for each problem.
. The base of a number is the number of unique digits (including zero) used to represent numbers in positional numeral systems.
STEP 2
For problem a, we need to multiply 31five and five . First, convert these numbers to base10.
31five =⋅51+1⋅50=15+1=16ten five =⋅50=ten
STEP 3
Multiply the base10 numbers.
16ten ⋅3ten =48ten
STEP 4
Convert the result back to base.
48ten =1⋅3+4⋅1+3⋅0=143five
STEP 5
For problem b, we need to add 31five and 3five . First, convert these numbers to base10.
31five =3⋅51+1⋅50=15+1=16ten 3five =3⋅50=3ten
STEP 6
Add the base10 numbers.
16ten +3ten =19ten
STEP 7
Convert the result back to base5.
19ten =3⋅51+4⋅50=34five
STEP 8
For problem d, we need to add 242five and 4five . First, convert these numbers to base10.
242five =2⋅52+4⋅51+2⋅50=50+20+2=72ten 4five =4⋅50=4ten
STEP 9
Add the base numbers.
72ten +4ten =76ten
STEP 10
Convert the result back to base5.
76ten =3⋅52+0⋅5+⋅50=301five
STEP 11
For problem c, we need to multiply 51six and 23six . First, convert these numbers to base10.
51six =5⋅6+⋅60=30+=31ten 23six =⋅6+3⋅60=+3=15ten
STEP 12
Multiply the base10 numbers.
31ten ⋅15ten =465ten
STEP 13
Convert the result back to base6.
465ten =2⋅63+0⋅62+3⋅6+3⋅60=2033six
STEP 14
For problem e, we need to add 10110two and 10two . First, convert these numbers to base10.
10110two =⋅24+0⋅23+⋅22+⋅2+0⋅20=16+4+2=22ten 10two =⋅2+0⋅20=2ten
STEP 15
Add the base10 numbers.
22ten +2ten =24ten
STEP 16
Convert the result back to base2.
24ten =⋅24+⋅23+0⋅22+0⋅2+0⋅20=11000two
STEP 17
For problem f, we need to multiply 10011two and 100two . First, convert these numbers to base10.
10011two =⋅24+0⋅23+0⋅22+⋅2+⋅20=16+2+=19ten 100two =⋅22+0⋅2+0⋅20=4ten
STEP 18
Multiply the base10 numbers.
ten ⋅4ten =76ten
STEP 19
Convert the result back to base.
76ten =1⋅6+⋅5+⋅4+1⋅3+1⋅+⋅1+⋅=100110two