Math  /  Calculus

Question\begin{tabular}{|l|} \hline Score \\ \hline \end{tabular}
Part V Evaluate the following integral. (5 scores per question. The total is 10 scores.)
18. 11(e2x12+x)dx\int_{-1}^{1}\left(e^{2 x}-\frac{1}{2+x}\right) d x.

Studdy Solution

STEP 1

Assumptions
1. We need to evaluate the definite integral: 11(e2x12+x)dx\int_{-1}^{1}\left(e^{2x} - \frac{1}{2+x}\right) dx.
2. The integral is over the interval from x=1x = -1 to x=1x = 1.
3. The function e2xe^{2x} is continuous over the interval [1,1][-1, 1].
4. The function 12+x\frac{1}{2+x} is continuous over the interval [1,1][-1, 1], except at x=2x = -2, which is outside the interval.
5. We will evaluate the integral by splitting it into two separate integrals.

STEP 2

Split the integral into two separate integrals:
11(e2x12+x)dx=11e2xdx1112+xdx\int_{-1}^{1}\left(e^{2x} - \frac{1}{2+x}\right) dx = \int_{-1}^{1} e^{2x} \, dx - \int_{-1}^{1} \frac{1}{2+x} \, dx

STEP 3

Evaluate the first integral: 11e2xdx\int_{-1}^{1} e^{2x} \, dx.
To do this, use the substitution u=2xu = 2x, which gives du=2dxdu = 2 \, dx or dx=12dudx = \frac{1}{2} \, du.

STEP 4

Change the limits of integration for the substitution:
When x=1x = -1, u=2(1)=2u = 2(-1) = -2.
When x=1x = 1, u=2(1)=2u = 2(1) = 2.
Thus, the integral becomes:
22eu12du=1222eudu\int_{-2}^{2} e^{u} \cdot \frac{1}{2} \, du = \frac{1}{2} \int_{-2}^{2} e^{u} \, du

STEP 5

Evaluate the integral 1222eudu\frac{1}{2} \int_{-2}^{2} e^{u} \, du:
The antiderivative of eue^{u} is eue^{u}, so:
12[eu]22=12(e2e2)\frac{1}{2} \left[ e^{u} \right]_{-2}^{2} = \frac{1}{2} \left( e^{2} - e^{-2} \right)

STEP 6

Evaluate the second integral: 1112+xdx\int_{-1}^{1} \frac{1}{2+x} \, dx.
Use the substitution v=2+xv = 2 + x, which gives dv=dxdv = dx.

STEP 7

Change the limits of integration for the substitution:
When x=1x = -1, v=2+(1)=1v = 2 + (-1) = 1.
When x=1x = 1, v=2+1=3v = 2 + 1 = 3.
Thus, the integral becomes:
131vdv\int_{1}^{3} \frac{1}{v} \, dv

STEP 8

Evaluate the integral 131vdv\int_{1}^{3} \frac{1}{v} \, dv:
The antiderivative of 1v\frac{1}{v} is lnv\ln |v|, so:
[lnv]13=ln3ln1=ln3ln1\left[ \ln |v| \right]_{1}^{3} = \ln |3| - \ln |1| = \ln 3 - \ln 1
Since ln1=0\ln 1 = 0, this simplifies to:
ln3\ln 3

STEP 9

Combine the results from STEP_5 and STEP_8 to find the value of the original integral:
11(e2x12+x)dx=12(e2e2)ln3\int_{-1}^{1}\left(e^{2x} - \frac{1}{2+x}\right) dx = \frac{1}{2} (e^{2} - e^{-2}) - \ln 3

STEP 10

Calculate the final result:
The integral evaluates to:
12(e2e2)ln3\frac{1}{2} (e^{2} - e^{-2}) - \ln 3
This is the final answer.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord